
Agent and Object Technology Lab
Dipartimento di Ingegneria dell’Informazione

AOTAOT
L BL B Dipartimento di Ingegneria dell Informazione

Università degli Studi di ParmaLABLAB

Software Engineering

Implementation and MaintenanceImplementation and Maintenance

Prof. Agostino Poggi

AOTAOT
LABLAB Implementation

Implementation involves taking all of the detailed
design documents from the design phase and
transforming them into the actual system

Primary Implementation activities include:Primary Implementation activities include:

Coding and debugging

Testing

D t ti l tiDocumentation completion

Installation

2

AOTAOT
LABLAB Coding Style

Good coding style is important because programs are:
Written once

Read many timesRead many times

Each software company enforces its own coding
standards (house style)

Important aspects of coding style:Important aspects of coding style:
Layout

Naming

Commenting

3

Commenting

AOTAOT
LABLAB Documentation is Code

Comments are as important as the code itself
Determine successful use of code
Determine whether code can be maintained

• Creation/maintenance = 1/10

Documentation belongs in code or as close as possibleDocumentation belongs in code or as close as possible
Code evolves, documentation drifts away
Put specifications in comments next to code when possiblePut specifications in comments next to code when possible
Write a short description for each method
Link the code to the external documentationLink the code to the external documentation

Avoid useless comments

4

AOTAOT
LABLAB Implementation Diagrams

Component Diagrams

Used to document dependencies between components,
typically files, either compilation dependencies or run-time
dependencies

Deployment Diagramsp y g

Used to show the configuration of run-time processing g p g
elements and the software components and processes that
are located on them

5

AOTAOT
LABLAB Implementation Tools

CASE tools
Compilers, interpreters and run-times
Visual editorsVisual editors
IDEs
Version control systems
Database management systemsDatabase management systems
Testing tools
Installation tools
Conversion tools

6

AOTAOT
LABLAB Testing

Testing involves bringing all the project pieces together
into a special testing environment to test for errors,
bugs, and interoperability, in order to verify that the
system meets all the business requirements defined in
the analysis phase

Primary testing activities include:y g

Write the test conditions

Perform the system testing

Provide feedback to improve software

7

Provide feedback to improve software

AOTAOT
LABLAB Dealing with Errors

Error prevention (before the system is released):
Use good programming methodology to reduce complexity
Use version control to prevent inconsistent systems
Apply verification to prevent algorithmic bugs

Error detection (while system is running):
Testing: create failures in a planned way
Debugging: start with an unplanned failures
Monitoring: deliver information about system state

Error recovery (after the system is released):
Data base systems (atomic transactions)
Modular redundancy

8

Recovery blocks

AOTAOT
LABLAB Definitions

Error
Any discrepancy between an actual, measured value and a
theoretical, predicted value

Fault
A condition that causes the software to malfunction or failA condition that causes the software to malfunction or fail
(cause)

FailureFailure
The inability of a piece of software to perform according to its
specifications (effect)specifications (effect)

• Failures are caused by faults, but not all faults cause failures
• A piece of software has failed if its actual behavior differs in

9

A piece of software has failed if its actual behavior differs in
any way from its expected behavior

AOTAOT
LABLAB Test Plan

A test plan specifies how to demonstrate that the
software is free of faults and behaves according to the
requirements specification

A test plan breaks the testing process into specific
tests addressing specific data items and valuestests, addressing specific data items and values

10

AOTAOT
LABLAB Test Specification

Each test has a test specification that documents the
purpose of the test

If a test is to be accomplished by a series of smaller
tests the test specification describes the relationshiptests, the test specification describes the relationship
between the smaller and the larger tests

The test specification must describe the conditions that
i di t h th t t i l t d findicate when the test is complete and a means for
evaluating the results

11

AOTAOT
LABLAB Test Oracle

A test oracle is the set of predicted results for a set of
tests, and is used to determine the success of testing

Test oracles are extremely difficult to create and areTest oracles are extremely difficult to create and are
ideally created from the requirements specification

12

AOTAOT
LABLAB Test Cases

A test case is a set of inputs to the system

Successfully testing a system hinges on selecting y g y g g
representative test cases

Poorly chosen test cases may fail to illuminate the
faults in a systemy

In most systems exhaustive testing is impossible so aIn most systems exhaustive testing is impossible, so a
white (glass) box or black box testing strategy is
typically selected

13

typically selected

AOTAOT
LABLAB Testing Techniques

Glass box testing
Allowed to examine code

Attempt to improve thoroughness of testsAttempt to improve thoroughness of tests

Based on the knowledge of the code

Black box testing
Treat program as “black box”

Test behavior in response to inputsTest behavior in response to inputs

Based on the knowledge of the expected result

14

AOTAOT
LABLAB Glass Box Testing Limits

Logic of a piece of code defines a set of possible
execution paths, flow-paths through the function

Think of a flow-chart
The inputs control which path is taken

A good set of test data might make sure every possibleA good set of test data might make sure every possible
path is followed

This tests every possible behaviorThis tests every possible behavior

The problem is that for even small programs with loops p p g p
and conditionals, the total number of paths becomes
too large too quickly

15

g q y

AOTAOT
LABLAB Common Errors

Boundary values, boundary conditions
Extremes are incorrectly identified

• E.g., the last item or first item in a collection
• E.g., the start or end of a range of values

Off-by-one errors
Related to boundary conditions

• E.g., using the nth value instead of n-1
• E.g., using 0 instead of 1

Incorrect inputs
Rely on pre-conditions defined for your functions

• Throws a related exception if programmed

16

• Causes an unexpected behavior otherwise

AOTAOT
LABLAB Testing Stages

Alpha test
Test components during development

Usually glass box testUsually glass box test

Divided in unit and integration test

Beta test
Test in real user environment

Always black box testAlways black box test

Acceptance

17

p

AOTAOT
LABLAB Unit Testing

The units comprising a system are individually tested

The code is examined for faults in algorithms data andThe code is examined for faults in algorithms, data and
syntax

A set of test cases is formulated and input and the
lt l t dresults are evaluated

The module being tested should be reviewed in
context of the requirements specification

18

q p

AOTAOT
LABLAB Unit Testing

Not possible to test all flow paths

Many paths by combining conditionals, switches, etc.

Infinite number of paths for loops

New paths caused by exceptionsp y p

Test coverageest co e age

Alternative to flow path

Ensure each line of code tested

Does not capture all possible combinations

19

Does not capture all possible combinations

AOTAOT
LABLAB Integration Testing

The goal is to ensure that groups of components work
together as specified in the requirements document

Four kinds of integration tests exist

Structure tests

Functional tests

Stress testsStress tests

Performance tests

20

AOTAOT
LABLAB Integration Testing Strategies

Big bang integration

Bottom up integrationBottom up integration

T d i t tiTop down integration

Sandwich testing

Variations of the above

21

AOTAOT
LABLAB Bottom Up Testing

The subsystem in the lowest layer of the call hierarchy
are tested individually

Th h b d h ll hThen the next subsystems are tested that call the
previously tested subsystems

This is done repeatedly until all subsystems are
i l d d i th t tiincluded in the testing

Tests are usually performed through a test driverTests are usually performed through a test driver

It calls a subsystem and passes a test case to it

22

AOTAOT
LABLAB Top Down Testing

Test the top layer or the controlling subsystem first

Then combine all the subsystems that are called by the
tested subsystems and test the resulting collection oftested subsystems and test the resulting collection of
subsystems

Do this until all subsystems are incorporated into the
test

Tests are usually performed through a test stub

It simulates the activity of a missing subsystem by answering
to the calling sequence of the calling subsystem and

t i b k f k d t

23

returning back fake data

AOTAOT
LABLAB Bottom Up Vs. Top Down

Bad for functionally Test cases can be defined
decomposed systems
because it tests the most
i t t b t (UI)

in terms of the functionality
of the system

important subsystem (UI)
last

Writing stubs can be
difficult because they must
allow all possible
conditions to be tested

Useful for integrating
object-oriented systems,

Possibly a very large
number of stubs may be

real-time systems and
systems with strict

f i t

required, especially if the
lowest level of the system

t i th d
24

performance requirements contains many methods

AOTAOT
LABLAB Acceptance Test

Test entire software placing it in user environment

Test software with

Real-world data

Real users

Typical operating conditions

Test cases selected by usersTest cases selected by users

Ensure software meets specifications

25

Ensure software meets specifications

AOTAOT
LABLAB Test Suite

Obviously you have to test your code to get it working
in the first placein the first place

You can do ad hoc testing (running whatever tests occur to
you at the moment) oryou at the moment), or

You can build a test suite (a thorough set of tests that can
be run at any time)

26

AOTAOT
LABLAB Test Suite

Advantages of a test suite
Reduces total number of bugs in delivered code
Makes code much more maintainable and refactorable

• This is a huge win for programs that get actual use!

Disadvantages of a test suiteDisadvantages of a test suite
It’s a lot of extra programming

• This is true but the use of a good test framework can helpThis is true, but the use of a good test framework can help
quite a bit

You don’t have time to do all that extra work
• But experiments repeatedly show that test suites reduce

debugging time more than the amount spent building the test
it

27

suite

AOTAOT
LABLAB Test Results

28

AOTAOT
LABLAB Object-Oriented Testing

The components to be tested are object classes that
are instantiated as objects

Larger grain than individual functions so approaches toLarger grain than individual functions so approaches to
white-box testing have to be extended

No obvious ‘top’ to the system for top-down integration
and testing

29

AOTAOT
LABLAB Testing Levels

Testing operations associated with objects

Testing object classes

Testing clusters of cooperating objectsTesting clusters of cooperating objects

Testing the complete system

30

AOTAOT
LABLAB Object Class Testing

Complete test coverage of a class involves

Testing all operations associated with an objectg p j

Setting and interrogating all object attributesg g g j

Exercising the object in all possible statesExercising the object in all possible states

Inheritance makes it more difficult to design objectInheritance makes it more difficult to design object
class tests as the information to be tested is not
localized

31

localized

AOTAOT
LABLAB Object Integration

Levels of integration are less distinct in object-oriented
systems

Cluster testing is concerned with integrating and
testing clusters of cooperating objects

Identify clusters using knowledge of the operation of y g g p
objects and the system features that are implemented
by these clusters

32

y

AOTAOT
LABLAB Cluster Testing Approaches

Use-case or scenario testing
Testing is based on a user interactions with the system
Has the advantage that it tests system features as
experienced by users

Thread testingThread testing
Tests the systems response to events as processing threads
through the systemthrough the system

Object interaction testing
Tests sequences of object interactions that stop when an
object operation does not call on services from another
object

33

object

AOTAOT
LABLAB

Inheritance, Polymorphism and
Dynamic BindingDynamic Binding

Inheritance
Methods inherited from a superclass must be retested in the
context of the subclasses
Testing using the context of the superclass may not include
all the cases that may occur in context of the subclasses

Polymorphism
Parameters have more than one set of values and anParameters have more than one set of values and an
operation may be implemented by more than one method

Dynamic bindingDynamic binding
Methods that implement an operation are unknown until run
time

34

time

AOTAOT
LABLAB

Extreme Programming Approach
to Testingto Testing

Tests are written before the code itself

If code has no automated test case, it is assumed not
t kto work

A f k i d h d iA test framework is used so that automated testing
can be done after every small change to the code

This may be as often as every 5 or 10 minutes

If a bug is found after development, a test is created
to keep the bug from coming back

35

to keep the bug from coming back

AOTAOT
LABLAB Extreme Programming Development

First, you create one test to define some small aspect
of the problem at hand

Then you create the simplest code that will make thatThen you create the simplest code that will make that
test pass

Then you create a second test

Th dd d t k thi t tThen you add some new code to make this new test
pass

But no more until you have yet a third test

You continue until there is nothing left to test

36

You continue until there is nothing left to test

AOTAOT
LABLAB Extreme Programming Advantages

Fewer bugs

More maintainable codeMore maintainable code

C ti i t tiContinuous integration

During development, the program always works

It may not do everything required, but what it does, it does
right

37

AOTAOT
LABLAB JUnit

JUnit is a framework for writing tests

JUnit was written by Erich Gamma (of design patterns
fame) and Kent Beck (creator of XP methodology)fame) and Kent Beck (creator of XP methodology)

JUnit uses Java’s reflection capabilities (Java
programs can examine their own code)

38

AOTAOT
LABLAB JUnit

JUnit helps the programmer:

Define and execute tests and test suites

Formalize requirements and clarify architecture

Write and debug codeWrite and debug code

Integrate code and always be ready to release a working
versionversion

JUnit is not yet included in Sun’s SDK but anJUnit is not yet included in Sun s SDK, but an
increasing number of IDEs include it

E g Eclipse

39

E.g., Eclipse

AOTAOT
LABLAB Calculator Class Example

package system.calc;

public class Calculator {
public void add(int n) {
result = result + n;

private static int result; // Static variable where the result is stored

}

result = result + n;
}

public void substract(int n) {
result = result - 1;
}

public void multiply(int n) {} //Not implemented yet

public void divide(int n) {
result = result / n;;
}

public void square(int n) {
result = n * n;
}public void switchOn() { // Swith on the screen display "hello" beep }

public void squareRoot(int n) {
for (; ;) ; //Bug : loops indefinitely
}

public void switchOn() { // Swith on the screen, display hello , beep
result = 0; // and do other things that calculator do nowadays
}

public void switchOff() { } // Display "bye bye", beep, switch off the screen
public void clear() { // Cleans the result
result = 0;
}

public int getResult() {
return result;
}

40

AOTAOT
LABLAB Calculator Class Example

package system.junit.calc;

import calc.Calculator;
import org junit Before;

@Before
public void clearCalculator() {import org.junit.Before;

import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.*;

bli l C l l t T t {

() {
calculator.clear();
}

@Test
public void add() {public class CalculatorTest {

private static Calculator calculator = new Calculator();

}

public void add() {
calculator.add(1);
calculator.add(1);
assertEquals(calculator.getResult(), 2);
}}

@Test
public void subtract() {
calculator.add(10);

l l t bt t(2)

@Test(expected = ArithmeticException.class)
public void divideByZero() {

calculator.subtract(2);
assertEquals(calculator.getResult(), 8);
}

@Test

calculator.divide(0);
}

@Ignore("not ready yet")
@Test

public void divide() {
calculator.add(8);
calculator.divide(2);
assert calculator.getResult() == 5;

@
public void multiply() {
calculator.add(10);
calculator.multiply(10);
assertEquals(calculator.getResult(), 100);

41

}
q (g (),);

}

AOTAOT
LABLAB Calculator Class Example

java –ea org.junit.runner.JUnitCore system.test.calc.CalculatorTest

There were 2 failures:
1) subtract(system.test.calc.CalculatorTest)
java.lang.AssertionError: expected:<9> but was:<8>

public void substract(int n) {
result = result - 1;
}

j g p
at org.junit.Assert.fail(Assert.java:69)

2) divide(system.test.calc.CalculatorTest)
java.lang.AssertionError

}

java.lang.AssertionError
at system.test.calc.CalculatorTest.divide(CalculatorTest.java:40)

FAILURES!!!
Tests run: 4 Failures: 2Tests run: 4, Failures: 2

@Test
public void divide() {
calculator add(8);calculator.add(8);
calculator.divide(2);
assert calculator.getResult() == 5;
}

42

}

AOTAOT
LABLAB Calculator Class Example

Is JUnit testing overkill for this little class?

XP view is: if it isn’t tested assume it doesn’t workXP view is: if it isn t tested, assume it doesn t work

Y t lik l t h l thi t i i l iYou are not likely to have many classes this trivial in a
real program, so writing JUnit tests for those few trivial
l i bi d lclasses is no big deal

Often even XP programmers don’t bother writing tests
for simple getter methods such as getResult()

43

p g g ()

AOTAOT
LABLAB Test Declaration

@Test
Annotates the test methods
May have parameters declaring:y p g

• The type of exception that should be thrown
▫ E.g., @Test(expected = ArithmeticException.class)
▫ Test fails either if no exception is thrown or if a different exception is

thrown

• A time-out period in millisecondsA time out period in milliseconds
▫ E.g., @Test(time-out=10)
▫ Test fails if it takes more time than the one defined by the time-out

@Ignore
Informs the test runner to ignore the test, but reporting that it

44

g , p g
was not run

AOTAOT
LABLAB Set up and Tear down

@Before and @After
Methods annotated with @Before execute before every test
Methods annotated with @After execute after every test
There may be any number of @Before and @After methods
It is possible to inherit the @Before and @After methods

• @Before: execution is down the inheritance chain (superclass first)
• @After : execution is up the inheritance chain (subclass first)

@BeforeClass and @AfterClass
Only a @BeforeClass method and a @AfterClass method are
allowed
Provide one-time set up and tear down, that is they are

i l b f d f ll h
45

respectively executes once before and after all the tests

AOTAOT
LABLAB Assert Methods

Use it to document a condition that you “know” to be
true

Use assert false in code that you “know” cannot be
reached (such as a default case in a switch statement)

Do not use assert to check whether parameters have
l l l th l h th ilegal values, or other places where throwing an
Exception is more appropriate

46

AOTAOT
LABLAB Assert Methods

assertEquals
Asserts that either two objects or two primitive values are equal

assertTrue, assertFalse
Assert that two Boolean values are either equal or are different

assertNull, assertNotNull
Assert that an object either is null or is not null

assertSame, assertNotSame
Assert that two objects either refer to the same object or do not refer to
the same object

fail, failNotEquals, failSame, failNotSame
Cause the unconditional / conditional failure of a test

47

AOTAOT
LABLAB Problems with Unit Testing

JUnit is designed to call methods and compare the
results they return against expected results

This works great for methods that just return results,
but many methods have side effects

To test methods that do output, you have to capture the
outputp

• It’s possible to capture output, but it’s an unpleasant coding
chorec o e

To test methods that change the state of the object, you
have to write the code that checks the state

48

have to write the code that checks the state

AOTAOT
LABLAB Problems with Unit Testing

Heavy use of JUnit encourages a “functional” style,
where most methods are called to compute a value,
rather than to have side effects

This can actually be a good thing

Methods that just return results, without side effects (such asMethods that just return results, without side effects (such as
printing), are simpler, more general, and easier to reuse

49

AOTAOT
LABLAB Test Double

Sometimes it is just plain hard to test the system under
test (SUT) because it depends on other components
that cannot be used in the test environment

In these cases each of such components can be
replaced with a test doublereplaced with a test double

A test double is any object or component used in place of the
real component to execute the testreal component to execute the test
A test double doesn't have to behave exactly like the real
componentcomponent
A test double merely has to provide the same API as the real
one so that the SUT thinks it is the real one!

50

AOTAOT
LABLAB Test Double Types

Dummy object
Is a placeholder object that is passed to the code under test as a
parameter but never used

T t t bTest stub
Is an object that is used by a test to replace a real component to
force the system down the path we want for the testforce the system down the path we want for the test

Mock object
I bj t th t i d b t t t l l t dIs an object that is used by a test to replace a real component and
that returns hard coded values or values preloaded

Fake objectFake object
Is an object that replace the functionality of the of the real object
with an alternate implementation

51

with an alternate implementation
• I.e., returning a canned list of values instead of hitting a database

AOTAOT
LABLAB Test Stub and Mock Object

public class WarehouseStub implements
Warehouse public class WarehouseMock implements Warehouse

{{
public void add(String product, int i) { }
public int getInventory(String product) {

{
int inventoryResult;
boolean hasInventoryResult;
int expectedCalls actualCalls;return 0;

}
public boolean hasInventory(String product) {

return false;

int expectedCalls,actualCalls;
…
public int getInventory(String product) {

actualCalls++;
return false;

}
public void remove(String product, int i) { }

}

return inventoryResult;
}
public void setGetInventoryResult(int result) {

} this.inventoryResult = result;
expectedCalls++;

}
…
public boolean verify(){

return expectedCalls == actualCalls;
}

52

}
}

AOTAOT
LABLAB Documentation

User documentation

Written or visual information about an application system,
how it works, and how to use ithow it works, and how to use it

Help users understand how to use software

System documentation

Detailed information about a system’s design specs, its
internal workings, and its functionalityinternal workings, and its functionality

Help coders understand how to modify, maintain software

53

AOTAOT
LABLAB Documentation

Training manuals organized around the tasks the users
carry out

On-line computer-based training that can be delivered
when the users need it

Reference manuals to provide complete description of p p p
the system in terms the users can understand

On-line help replicating the manuals

54

AOTAOT
LABLAB What Makes Good Documentation?

Use of overview, index, getting started instructions
sections, i.e., all that make structured the
documentation

Based on the description of functionalities

Oriented to help in the execution of the tasks of the
systems and to recognize the state of the systemsystems and to recognize the state of the system

“How to …”

Frequently Asked Questions

Messages & their meanings

55

Messages & their meanings

AOTAOT
LABLAB User Training

Set clear learning objectives for trainees
Training should be practical and geared to the tasks
the users will carry out
Training should be delivered ‘just in time’ not weeks
before the users need itbefore the users need it
Computer-based training can deliver ‘just in time’
t i itraining
Follow up after the introduction of the system to make
sure users haven’t got into bad habits through lack of
training or having forgotten what they had been told

56

AOTAOT
LABLAB Installation

57

AOTAOT
LABLAB Direct Changeover

On a date the old system stops and the new system
starts
+ Brings immediate benefitsg

+ Forces users to use the new system

+ Simple to plan+ Simple to plan

- No fallback if problems occur

- Contingency plans required for the unexpected

- The plan must work without difficultiesThe plan must work without difficulties

Suitable for small-scale, low-risk systems

58

Suitable for small scale, low risk systems

AOTAOT
LABLAB Parallel Running

Old system runs alongside the new system for a period
of time
+ Provides fallback if there are problemsp

+ Outputs of the two systems can be compared, so testing
continues into the live environment

- High running cost including staff for dual data entry

C i d i h i f- Cost associated with comparing outputs of two systems

- Users may not be committed to the new system

Suitable for business-critical, high-risk systems

59

AOTAOT
LABLAB Phased Changeover

The new system is introduced in stages, department
by department or geographically
+ Attention can be paid to each sub-system in turn
+ Sub-systems with a high return on investment can be

introduced first
+ Thorough testing of each stage as it is introduced

- If there are problems rumors can spread ahead of the p p
implementation

- There can be a long wait for benefits from later stagesg g

Suitable for large systems with independent sub-
systems

60

systems

AOTAOT
LABLAB Post Implementation Review

Review the system

Whether it is delivering the benefits expected

Whether it meets the requirements

Review the development projectReview the development project

Record lessons learned

Use actual time spent on project to improve estimating
processp

Plan actions for any maintenance or enhancements

61

AOTAOT
LABLAB Evaluation Report

Cost benefit analysis
Has it delivered?
Compare actual ones with projections

Functional requirements
Have they been met?Have they been met?
Any further work needed?

Non-functional requirementsNon-functional requirements
Assess whether measurable objectives have been met

User satisfactionUser satisfaction
Quantitative and qualitative assessments of satisfaction with
the product

62

the product

AOTAOT
LABLAB Evaluation Report

Problems and issues
Problems during the project and solutions so lessons can be
learned

Positive experiences
What went well?

Who deserves credit?

Quantitative data for planning
How close were time estimates to actual ones?

How can we use this data?

63

AOTAOT
LABLAB Evaluation Report

Candidate components for reuse

Are there components that could be reused in other projects
in the future?in the future?

Future developments

Were requirements left out of the project due to time
pressure?

When should they be developed?

Actions

Summary list of actions responsibilities and deadlines

64

Summary list of actions, responsibilities and deadlines

AOTAOT
LABLAB Maintenance

Software maintenance is the modification of a software
product after delivery

To correct faults

To improve performance or other attributes

To adapt the product to a modified environment

65

AOTAOT
LABLAB Maintenance Activities

Systems need maintaining after they have gone live

Bugs will appear and need fixingBugs will appear and need fixing

E h t t th t b t dEnhancements to the system may be requested

Maintenance needs to be controlled so that bugs are
not introduced and unnecessary changes are not y g
made

66

AOTAOT
LABLAB Maintenance Activities

Helpdesk, operations and support staff need training to
take on these tasks

A change control system is required to manage
requests for bug fixes and enhancements

Changes need to be evaluated for their cost and their g
impact on other parts of the system, and then planned

67

AOTAOT
LABLAB Maintenance Documentation

Bug reporting database

Requests for enhancements

Feedback to users

Implementation plans for changesp p g

Updated technical and user documentationp

Records of changes made

68

g

