
Agent and Object Technology Lab
Dipartimento di Ingegneria dell’Informazione

AOTAOT
L BL B Dipartimento di Ingegneria dell Informazione

Università degli Studi di ParmaLABLAB

Software Engineering

Design PatternsDesign Patterns

Prof. Agostino Poggi

AOTAOT
LABLAB What are Design Patterns?

Design patterns are known solution to a recurring
design problem

Design pattern systematically name explain andDesign pattern systematically name, explain, and
evaluate important and recurring design solutions

Design patterns make it easier to reuse successful
designs and architectures

Design patterns help create reusable systems and
avoid alternatives that compromise reusabilityavoid alternatives that compromise reusability

Design patterns are also indicated with the name of
ft tt

2

software patterns

AOTAOT
LABLAB Design Pattern Features

Design Pattern
Provide common vocabulary
Provide “shorthand” for communicating complex principles
Help document software architecture
Capture essential parts of a design in compact form
Show more than one solution
Describe software abstractions

Patterns do not
Provide an exact solutionProvide an exact solution
Solve all design problems
Apply outside object-oriented design

3

Apply outside object-oriented design

AOTAOT
LABLAB Derived Terms

Pattern Language
Is a structured collection of patterns that build on each other
to transform needs and constraints into an architecture
Defines collection of patterns and rules to combine them into
an architectural style for describing software frameworks or
families of related systemsfamilies of related systems

Pattern Catalog
Is a collection of related patterns, where patterns are
subdivided into small number of broad categories

SPattern System
Is a cohesive set of related patterns, which work together to

h i l i f f hi
4

support the construction / evolution of software architectures

AOTAOT
LABLAB Design Pattern Classification

Creational patterns
Create objects of the right class for a problem
Useful when need to choose between different classes at
runtime rather than compile time

Structural patterns
Form larger structures from individual parts
Vary depending on what sort of structure and purposey p g p p

Behavioral patterns
Support object interactionsSupport object interactions
Also support the selection of the algorithm that a class uses
at runtime

5

AOTAOT
LABLAB Design Pattern Classification

Object patterns (run-time)
Allow the instances of different classes to be used in the
same place in a pattern
Avoid fixing the class that accomplishes a given task at
compile time
Mostly use object composition to establish relationships
between objects

Cl tt (il ti)Class patterns (compile-time)
Tend to use inheritance to establish relationships
Generally fix the relationship at compile time
Less flexible and dynamic and less suited to polymorphic

h
6

approaches

AOTAOT
LABLAB GoF Patterns

E G R H l R J h d J Vli id D i P tt El t f R bl

7

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

AOTAOT
LABLAB Alexandrian Form

Name Meaningful name

Problem The statement of the problem

Context A situation giving rise to a problemg g p

Forces A description of relevant forces and constraints

Solution Proven solution to the problemSolution Proven solution to the problem

Examples Sample applications of the pattern

Resulting context The state of the system after pattern has been applied

Rationale Explanation of steps or rules in the pattern p p p

Related patterns Static and dynamic relationship

Kno n se Occ rrence of the pattern and its application ithin

8

Known use Occurrence of the pattern and its application within
existing system

AOTAOT
LABLAB GoF Form

Name and
Naming the pattern allows design to work at a higher level of
abstraction, using a vocabulary of patterns. Gamma says

classification that finding a good name is one of the hardest problems of
developing a catalogue of patterns

Intent: An answer to questions such as: What does the pattern do?Intent: An answer to questions such as: What does the pattern do?
What problem does it address?

Also known as Other names for the patternp

Motivation A concrete scenario that illustrates a design problem and
how the pattern solves the problem.

Applicability Instructions for how you can recognize situations in which
patterns are applicable

Structure A graphical representation of the classes in the pattern

Participants The responsibilities of the classes and objects that

9

Participants participate in the pattern

AOTAOT
LABLAB GoF Form

Collaborations How participants collaborate to fullfil their responsibilities.

Consequences The results, side effects and trade offs of its use

Implementation Guidance on the implementation of the patternp p p

Sample code Code fragments that illustrate thepattern implementation

Known uses Where to find real-world examples of the pattern

R l t d tt S i diff d th tt l ti hiRelated patterns Synergies, differences, and other pattern relationships

10

AOTAOT
LABLAB Factory Method Design Pattern

Defines an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses

Application Document

Document d = self.createDocument()

+newDocument()
+createDocument() : Document 1 *

+open()
+close()
+save()

PDFDocument WordDocument

+createDocument() : Document

WordApplication

+createDocument() : Document

PDFApplication

() ()
«instantiate»

«instantiate»

11

return new WordDocument

AOTAOT
LABLAB Applicability

A class can’t anticipate the class of objects it must
create

A class wants its subclasses to specify the objects it
createscreates

Cl d l t ibilit t f lClasses delegate responsibility to one of several
helper subclasses, and you want to localize the
k l d f hi h h l b l i th d l tknowledge of which helper subclass is the delegate

12

AOTAOT
LABLAB Class Diagram

...
f t M th d()

Creator Product

p = factoryMethod()
...

+factoryMethod()
+anOperation()

ConcreteProductConcreteCreator «instantiate»

+factoryMethod() : Product

return new ConcreteProduct()

13

AOTAOT
LABLAB Abstract Factory Pattern

Provides an interface for creating families of related or
dependent objects without specifying their concrete
classes Client1

1

+createWindow() : Window
+createScrollBar() : ScrollBar

WidgetFactory
Window

1

1

*

1

MSWindow MotifWindow

+createWindow() : Window
+createScrollBar() : ScrollBar

MotifWidgetFactory

+createWindow() : Window
+createScrollBar() : ScrollBar

MSWidgetFactory

«instantiate»

ScrollBar

+createScrollBar() : ScrollBar +createScrollBar() : ScrollBar

«instantiate»

*

MSScrollBar MotifScrollBar

«instantiate»

14

«instantiate»

AOTAOT
LABLAB Applicability

A system should be independent of how its products
are created, composed, and represented

A system should be configured with one of multipleA system should be configured with one of multiple
families of products

A family of related product objects is designed to be
used together and you need to enforce this constraintused together, and you need to enforce this constraint

You want to provide a class library of products, and y
you want to reveal just their interfaces, not their
implementations

15

AOTAOT
LABLAB Class Diagram

16

AOTAOT
LABLAB Prototype Design Pattern

Specifies the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype

17

AOTAOT
LABLAB Applicability

A system should be independent of how its products
are created, composed, and represented; and:

When the classes to instantiate are specified at run time; orWhen the classes to instantiate are specified at run-time; or

To avoid building a class hierarchy of factories that parallels
the class hierarchy of products; or

When instances of a class can be in one of only a fewWhen instances of a class can be in one of only a few
different states. It may be more convenient to install a
corresponding number of prototypes and clone them rather p g p yp
than instantiating the class manually, each time with the
appropriate state

18

AOTAOT
LABLAB Class Diagram

+operace()

Client

+clone() : Prototype

Prototype

1

-prototype

1operace() clone() : Prototype1 1

+clone() : Prototype

ConcretePrototype1

+clone() : Prototype

ConcretePrototype2
p = prototype.clone()

+clone() : Prototype +clone() : Prototype

return copy of self return copy of self

19

AOTAOT
LABLAB Composite Design Pattern

Composes objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly

20

AOTAOT
LABLAB Applicability

You want to represent part-whole hierarchies of objects

You want clients to be able to ignore the difference
between compositions of objects and individual objectsp j j

Clients will treat all objects in the composite structure uniformlyj p y

21

AOTAOT
LABLAB Class Diagram

Component

Client
+add(in c : Component)
+remove(in c : Component)
+getChild(in index : int) : Component
+operation()

-component

*

1 1

ope at o ()

+operation()

Leaf

+add(in g : Component)
+remove(in g : Component)

tChild(i i d i t) C t

Composite

1+getChild(in index : int) : Component
+operation()

1

for (all components)
 component.operation()

22

AOTAOT
LABLAB Adapter Design Pattern

Converts the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces

DrawingEditor

+getBoundingBox() : Rectangle

Shape

+getExtent() : Rectangle

TextView

1 *

-text

1getBoundingBox() : Rectangle getExtent() : Rectangle1 1

+getBoundingBox() : Rectangle

LineShape

+getBoundingBox() : Rectangle

TextShape

1

return text.getExtent()

23

g ()

AOTAOT
LABLAB Applicability

You want to use an existing class, and its interface does
not match the one you need

You want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don’t
necessarily have compatible interfaces

You need to use several existing subclasses, but it’s
impractical to adapt their interface by sub-classing every
one. An object adapter can adapt the interface of its parent
class

24

AOTAOT
LABLAB Class Diagram

Client

+request()

Target

1 1

+request()

Adapter

+specificRequest()

Adaptee

1

-text

1

adaptee.specificRequest()

25

AOTAOT
LABLAB Decorator Design Pattern

Attaches additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
sub-classing for extending functionality

26

AOTAOT
LABLAB Applicability

To add responsibilities to individual objects dynamically
and transparently, that is, without affecting other objects

For responsibilities that can be withdrawn

When extension by sub-classing is impractical. Sometimes
a large number of independent extensions are possible and g p p
would produce an explosion of subclasses to support every
combination. Or a class definition may be hidden or
otherwise unavailable for sub-classing

27

AOTAOT
LABLAB Class Diagram

28

AOTAOT
LABLAB Proxy Design Pattern

Provides a surrogate or placeholder for another object to
t l t itcontrol access to it

29

AOTAOT
LABLAB Applicability

A remote proxy provides a local representative for an
object in a different address space
A virtual proxy creates expensive objects on demand
A protection proxy controls access to the original object
and is useful when an object should have different access
rights
A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed,
e.g., reference counting, loading persistent objects when

f d d i bj t l k h f ireferenced, and managing object locks when referencing
the real object in a multi-threaded environment

30

AOTAOT
LABLAB Class Diagram

31

AOTAOT
LABLAB Chain of Responsibility Design Pattern

Avoids coupling the sender of a request to its receiver
b i i h bj h h dl hby giving more than one object a chance to handle the
request. Chain the receiving objects and pass the

t l th h i til bj t h dl itrequest along the chain until an object handles it
Client HelpHandler

-handler1

+handleHelp()1 1 1 handler.handleHelp()

+handleHelp()
+showHelp()

Application Widget
handler

aClient

aButton

+handleHelp()
+showHelp()

Dialog

+handleHelp()
+showHelp()

Button

if (can handle)
 showHelp()

handler
aButton

handler
aDialog

32

s o e p()
else
 super.handleHelp()

handler
anApplication

AOTAOT
LABLAB Applicability

More than one object may handle a request, and the
handler isn’t known a priori. The handler should by
ascertained automatically

You want to issue a request to one of several objectsYou want to issue a request to one of several objects
without specifying the receiver explicitly

The set of objects that can handle a request should be
ifi d d i llspecified dynamically

33

AOTAOT
LABLAB Class Diagram

-successor1

Client

+handleRequest()

Handler

1 1 1 successor.handleRequest()

+handleRequest()

ConcreteHandler1

+handleRequest()

ConcreteHandler2

34

AOTAOT
LABLAB Command Design Pattern

Encapsulates a request as an object, thereby letting
you parameterize clients with different requests, queue
or log requests, and support undoable operations

+add(in doc : Document)

Application

+add(in m : MenuItem)

Menu

+clicked()

MenuItem

+execute()

Command

1 * 1 * 1

-command

1
()

Document

() () ()

PasteCommand

1

AddCommand-document

-application 1
command.execute()

+open()
+close()
+cut()
+copy()
+paste()

+execute()

PasteCommand

* +execute()
+askUser() : string

AddCommanddocument

1 1

document paste()

1

document.paste()

name = askUser()
doc = new Document(name)

35

application.add(doc)
doc.open()

AOTAOT
LABLAB Applicability (1/2)

Parameterize objects by an action to perform. You can
express such parameterization in a procedural language
with a callback function, that is, a function that’s registered

h t b ll d t l t i t C dsomewhere to be called at a later point. Commands are an
object-oriented replacement for callbacks

Specify, queue, and execute requests at different times. A
C d bj t h lif ti i d d t f thCommand object can have a lifetime independent of the
original request. If the receiver of a request can be
represented in an address space independent way thenrepresented in an address space-independent way, then
you can transfer a command object for the request to a
different process and fulfill the request there

36

different process and fulfill the request there

AOTAOT
LABLAB Applicability (2/2)

Support undo. The Command’s Execute operation can
store state for reversing its effects in the command
itself

Support logging changes so that they can be reappliedSupport logging changes so that they can be reapplied
in case of a system crash

Structure a system around high-level operations built
i iti ti S h t t i ion primitive operations. Such a structure is common in

information systems that support transaction

37

AOTAOT
LABLAB Class Diagram

38

AOTAOT
LABLAB Iterator Design Pattern

Provides a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation

+createIterator() : Iterator

Collection Client

+first()
+next()
+isDone()

Iterator

1 1 1 1

+isDone()

+createIterator() : Iterator
+append()

List

+createIterator() : Iterator
+pop()

Stack

+first()
+next()

StackIterator

+first()
+next()

ListIterator

1 1

«instantiate»

+append()
+remove()
+get(in index)

+push()
+top()

+next()
+isDone()

+next()
+isDone()

1 1

1
1

39

«instantiate»

AOTAOT
LABLAB Applicability

Access an aggregate object’s contents without
exposing its internal representation

Support multiple traversals of aggregate objects

Provide a uniform interface for traversing different
t t t (th t i t t l hiaggregate structures (that is, to support polymorphic

iteration)

40

AOTAOT
LABLAB Class Diagram

+createIterator() : Iterator

Aggregate Client

+first()
+next()

Iterator

1 1 1 1

+next()
+isDone()

ConcreteAggregate
ConcreteIterator

+createIterator() : Iterator
+first()
+next()
+isDone()

1 1

«instantiate»

41

AOTAOT
LABLAB Observer Design Pattern

Defines a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically

Subject Observer

1 -observer*

-subject

+attach(in o : Observer)
+detach(in o : Observer)
+notify()

+update()

j

1 1

f ll b

data[] : float
StockMarket TextArea BarChart

for all observers
 observer.update()

+getData() : float
-data[] : float

+update()
+print(in data[])

+update()
+draw(in data[])

data = subject getData()

42

data = subject.getData()
print(data)

data subject.getData()
draw(data)

AOTAOT
LABLAB Applicability

When an abstraction has two aspects, one dependent
on the other. Encapsulating these aspects in separate
objects lets you vary and reuse them independently

When a change to one object requires changing
others and you don’t know how many objects need toothers, and you don’t know how many objects need to
be changed

When an object should be able to notify other objects
without making assumptions about who these objectswithout making assumptions about who these objects
are. In other words, you don’t want these objects
tightly coupled

43

tightly coupled

AOTAOT
LABLAB Class Diagram

Subject Observer

1 -observer*

-subject

+attach(in o : Observer)
+detach(in o : Observer)
+notify()

+update()
1 1

ConcreteSubject ConcreteObserver

for all observers
 observer.update()

+getState() +update()

subject.getState()

44

AOTAOT
LABLAB State Design Pattern

Allows an object to alter its behavior when its internal
state changes. The object will appear to change its
class

45

AOTAOT
LABLAB Applicability

An object’s behavior depends on its state, and it must
change its behavior at run-time depending on that
state
Operations often depend on the object’s state that is
usually represented by one or more enumerated y p y
constants. Often, several operations contain this same
conditional structure
The State pattern puts each branch of the conditional
in a separate class This lets you treat the object’sin a separate class. This lets you treat the object s
state as an object in its own right that can vary
independently from other objects

46

independently from other objects

AOTAOT
LABLAB Class Diagram

Context State-state

+request() +handle()1 1

ConcreteState1 ConcreteState2
state.handle()

+handle()

ConcreteState1

+handle()

ConcreteState2

47

AOTAOT
LABLAB Strategy Design Pattern

Defines a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it

48

AOTAOT
LABLAB Applicability

Many related classes differ only in their behavior.
Strategies allow the configuration of a class with one ofStrategies allow the configuration of a class with one of
many behaviors
You need different variants of an algorithm (e g toYou need different variants of an algorithm (e.g., to
manage different space/time trade-offs). Strategies can be
used implementing such algorithms through as a classused implementing such algorithms through as a class
hierarchy
Strategies avoid exposing complex algorithm-specific dataStrategies avoid exposing complex, algorithm-specific data
structures
A class defines many behaviors and these appear asA class defines many behaviors, and these appear as
multiple conditional statements in its operations. Instead of
many conditionals move relate conditional branches into

49

many conditionals, move relate conditional branches into
their own Strategy class

AOTAOT
LABLAB Class Diagram

t ()

Context

l i h ()

Strategy-strategy

+execute() +algorithm()1 1

ConcreteStrategy1 ConcreteStrategy2
strategy.algorithm()

+algorithm()

ConcreteStrategy1

+algorithm()

ConcreteStrategy2

50

AOTAOT
LABLAB Design Anti-Patterns

An anti-pattern is a common practices that are known
to lead problems which might not become evident until
much later

Design anti-patterns define a well-known and publiclyDesign anti patterns define a well known and publicly
recognized way to identify and prevent the common
mistakes and problems in software designmistakes and problems in software design

D i ti tt d ib l k dDesign anti-patterns describe commonly known and
tested countermeasures to an anti-pattern solution in
th f f f t d l ti

51

the form of a re-factored solution

AOTAOT
LABLAB Famous Anti-Pattern

Big ball of mud
A t ith i bl t tA system with no recognizable structure

Blob
Too much functionality in a single design element

Gas factoryy
An unnecessarily complex design

Input kludgeInput kludge
Failing to specify and implement handling of possibly invalid
inputp

Interface bloat
Making an interface so powerful that it is too hard to

52

Making an interface so powerful that it is too hard to
implement

