AOT
LAB

Agent and Object Technology Lab
Dipartimento di ingegneria deli’informazione
Universita degli Studi di Parma

Software Engineering

Design Patterns

Prof. Agostino Pogaqi

AfATB What are Design Patterns?

+ Design patterns are known solution to a recurring
design problem

+ Design pattern systematically name, explain, and
evaluate important and recurring design solutions

+ Design patterns make it easier to reuse successful
designs and architectures

¢ Design patterns help create reusable systems and
avoid alternatives that compromise reusability

+ Design patterns are also indicated with the name of
software patterns

AOT _
LAB Design Pattern Features

+ Design Pattern
= Provide common vocabulary
= Provide “shorthand” for communicating complex principles
= Help document software architecture
= Capture essential parts of a design in compact form
= Show more than one solution
= Describe software abstractions

¢ Patterns do not
= Provide an exact solution

= Solve all design problems
= Apply outside object-oriented design

AfATB Derived Terms

¢ Pattern Language

» |s a structured collection of patterns that build on each other
to transform needs and constraints into an architecture

» Defines collection of patterns and rules to combine them into
an architectural style for describing software frameworks or
families of related systems

+ Pattern Catalog
* |s a collection of related patterns, where patterns are
subdivided into small number of broad categories
¢ Pattern System

* |s a cohesive set of related patterns, which work together to
support the construction / evolution of software architectures

AfATB Design Pattern Classification

+ Creational patterns
»= Create objects of the right class for a problem

= Useful when need to choose between different classes at
runtime rather than compile time

¢ Structural patterns
= Form larger structures from individual parts
= Vary depending on what sort of structure and purpose

+ Behavioral patterns

= Support object interactions

= Also support the selection of the algorithm that a class uses
at runtime

T
AfAB Design Pattern Classification

¢ Object patterns (run-time)

= Allow the instances of different classes to be used in the
same place in a pattern

* Avoid fixing the class that accomplishes a given task at
compile time

= Mostly use object composition to establish relationships
between objects

¢ Class patterns (compile-time)
= Tend to use inheritance to establish relationships

= Generally fix the relationship at compile time

= |Less flexible and dynamic and less suited to polymorphic
approaches

AOT

LAB GoF Patterns
Creational Structural Behavioral
Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Factory Method Composite Interpreter
Prototype Decorator lterator
Singleton Facade Mediator
Flyweight Memento
Proxy Observer
State
Strategy
Template Method
Visitor

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

AOT

LAB Alexandrian Form
Name Meaningful name
Problem The statement of the problem
Context A situation giving rise to a problem
Forces A description of relevant forces and constraints
Solution Proven solution to the problem
Examples Sample applications of the pattern

Resulting context | The state of the system after pattern has been applied

Rationale Explanation of steps or rules in the pattern

Related patterns | Static and dynamic relationship

Known use Occurrence of the pattern and its application within
existing system

AfATB GoF Form

Naming the pattern allows design to work at a higher level of
Name and abstraction, using a vocabulary of patterns. Gamma says
classification that finding a good name is one of the hardest problems of
developing a catalogue of patterns

Intent: An answer to questions such as: What does the pattern do?
What problem does it address?

Also known as | Other names for the pattern

Motivation A concrete scenario that illustrates a design problem and
how the pattern solves the problem.

Instructions for how you can recognize situations in which

Applicability patterns are applicable

Structure A graphical representation of the classes in the pattern

The responsibilities of the classes and objects that

Participants participate in the pattern

AOT
LAB

GoF Form

Collaborations

How participants collaborate to fullfil their responsibilities.

Consequences

The results, side effects and trade offs of its use

Implementation

Guidance on the implementation of the pattern

Sample code

Code fragments that illustrate the patternimplementation

Known uses

Where to find real-world examples of the pattern

Related patterns

Synergies, differences, and other pattern relationships

10

A?}g Factory Method Design Pattern

+ Defines an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses

Documen t d = self.createDocumen t() ﬁ

-~

Application /// Documen !
-~
- +open()
nnnnnnnnnn 0 - L I‘Z) 2o
+++++ teDocument() : Document
Zr ve()
WordApplication PDFApplication PDFDocumen t WordDocumen t
+crea\teDocument() : Document +createDocument() : Document
\ | | tantiat N N
\ |
\ o ______1
\
\ stantiat
\

11

AfATB Applicability

+ A class can’t anticipate the class of objects it must
create

+ A class wants its subclasses to specify the objects it
creates

+ Classes delegate responsibility to one of several
helper subclasses, and you want to localize the
knowledge of which helper subclass is the delegate

12

AOT
LAB

Creator

+factoryMethod() P

+anOperation() -

/\

p = factoryMethod()

ConcreteCreator

«instantiate»

+factoryMethod() : Product

-~
-~
-~
-~

return new ConcreteProduct()

Class Diagram

Product

/\

ConcreteProduct

13

AOT
LAB

* Provides an interface for creating families of related or
dependent objects without specifying their concrete

classes

Abstract Factory Pattern

WidgetFactory

Q

eWin
eScro

» =

ow() : Window
IBar() : ScrollBar

@
L

MotifWidgetFactory

MSWidgetFactory

+createWindow() : Window
createScrollBar() : ScrollBar
T

+createWindow() : Window | _
createScrollBar() : ScrollBar :

indow

1

Clien

t

MSWindow
»

MotifWindow

MSScrollBar

MotifScrollBar

14

AfATB Applicability

+ A system should be independent of how its products
are created, composed, and represented

+ A system should be configured with one of multiple
families of products

+ A family of related product objects is designed to be
used together, and you need to enforce this constraint

+ You want to provide a class library of products, and
you want to reveal just their interfaces, not their
Implementations

15

AOT
LAB

Class Diagram

client
AbstractProductA «
AbstractFactory
CreateProdA() < A
CreateProcB() ‘ ‘
A ConcreteProductA1 ConcreteProductA2 «
ConcreteFactory1 ConcreteFactory2
CreateProdA() CreateProdA()
CreateProcB() CreateProcB()
AbstractProductB «
ConcreteProductB1 ConcreteProductB2 <

16

AOT
LAB

Prototype Design Pattern

+ Specifies the kinds of objects to create using a
prototypical instance, and create new objects by

copying this prototype

-prototype

Graphic

Tool
+insert()
/
/
/
/
/
/
g = prototype.clone() B

while (user drags mouse) {
g.draw(new position);

}

insert symbol into drawing;

1

+draw(in position)
+clone() : Graphic

T

Rectangle

+draw(in position)
+clone() : Graphic

/
/
/

return copy of self ﬁ

Circle

+draw(in position)
+clone() : Graphic

N\
N\
N\
N\

return copy of self ﬁ

17

AfATB Applicability

+ A system should be independent of how its products
are created, composed, and represented; and.:

= When the classes to instantiate are specified at run-time; or

= To avoid building a class hierarchy of factories that parallels
the class hierarchy of products; or

= When instances of a class can be in one of only a few
different states. It may be more convenient to install a
corresponding number of prototypes and clone them rather
than instantiating the class manually, each time with the
appropriate state

18

AOT
LAB

Client

Class Diagram

+operace()

p = prototype.clone()

-prototype Prototype
1 +clone() : Prototype
ConcretePrototypel ConcretePrototype2
1nrlAanafl) - Dratnhvunno 1rlAanaf\ - DratAathvnno
TUlivli IC\} - IULUL_yIJC ruivl IC\} « IUlUL_leC
/ N

/ \

/ \
\

return copy of self

return copy of self

19

AOT
LAB

Composite Design Pattern

¢+ Composes objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly

Graphic
Client

+add(in g : Graphic)

1 +remove(in g : Graphic) t
+getChild(in index : int) : Graphic -componen
+draw()

Rectangle Circle Drawing
+draw() +draw() +add(in g : Graphic) o

+remove(in g : Graphic)
+getChild(in index : int) : Graphic
+draw()

7
7/
/s

component.draw()

for (all graphics in picture) ﬁ

20

AfATB Applicability

+ You want to represent part-whole hierarchies of objects

+ You want clients to be able to ignore the difference
between compositions of objects and individual objects

= Clients will treat all objects in the composite structure uniformly

21

AOT
LAB

Client

Class Diagram

Component

+add(in ¢ : Component)
+remove(in ¢ : Component)

1 +getChild(in index : int) : Component -component
+operation()
Leaf Composite
+operation() +add(in g : Component)

+remove(in g : Component)
+getChild(in index : int) : Component
+operation()

for (all components)
component.operation()

22

AOT
LAB

Adapter Design Pattern

+ Converts the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces

DrawingEditor

Shape -text TextView
+getBoundingBox() : Rectangle 1 +getExtent() : Rectangle
LineShape TextShape

+getBoundingBox() : Rectangle +getBoundingBox() : Rectangle 1

7/
7/
/s
7/
Ve

return text.getExtent() ﬁ

23

AfATB Applicability

+ You want to use an existing class, and its interface does
not match the one you need

¢ You want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don’t
necessarily have compatible interfaces

* You need to use several existing subclasses, but it’s
Impractical to adapt their interface by sub-classing every

one. An object adapter can adapt the interface of its parent
class

24

AOT
LAB

Client

Target

1 +request()

Class Diagram

/\
Adapter -text Adaptee
+request() 1 +specificRequest()
/
/
/

/

adaptee.specificRequest()

25

A?}B Decorator Design Pattern

+ Attaches additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
sub-classing for extending functionality

VisualComponent 1
+draw() -component
TextView Decorator
>———
+draw() +draw() = — —|_ 1
aBorderDecorator component.draw() ﬁ
component —
BorderDecorator ScrollDecorator
aScrollDecorator +draw() +draw() -
component —, -7 +drawBorder() +scrollTo() RN 4
super.draw() ~
drawBorder() super.draw()
aTextView scrollTo()

26

AfATB Applicability

+ To add responsibilities to individual objects dynamically
and transparently, that is, without affecting other objects

+ For responsibilities that can be withdrawn

+ \When extension by sub-classing is impractical. Sometimes
a large number of independent extensions are possible and
would produce an explosion of subclasses to support every
combination. Or a class definition may be hidden or
otherwise unavailable for sub-classing

27

AOT
LAB

Component

+operation()

T

-component

ConcreteComponent

+operation()

Decorator

- %

+operation()— |~ _ 1

~ —~
=~ -~
~ -

Class Diagram

component.operation()

ConcreteDecorator1 ConcreteDecorator2

+operation()
+addedOperation1() +addedOperation2@ _|

+operation() ~

super.operation()
addedOperation2()

28

AOT
LAB

Proxy Design Pattern

* Provides a surrogate or placeholder for another object to
control access to it

if (image == null)
image = load(fileName)
image.draw()

DocumentEditor Element
1 +draw()
+getExtent()
Ted image ImageProxy
-extent Image e
-content -imagelmp] eI xete re:tme
+draw() +draw() " e
roetExenty +getExtent() +grea’:\lliv)(<zent()
+load() T

if (image == null)
return extent
else
return image.getExtent()

29

AfATB Applicability

+ A remote proxy provides a local representative for an
object in a different address space

+ A virtual proxy creates expensive objects on demand

+ A protection proxy controls access to the original object
and is useful when an object should have different access
rights

+ A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed,
e.g., reference counting, loading persistent objects when
referenced, and managing object locks when referencing
the real object in a multi-threaded environment

30

AOT
LAB

Client

Subject

* |[+request()

i

-real

+request()

+request()~

Class Diagram

real.request() ﬁ

31

AOT
LAB

Chain of Responsibility Design Pattern

+ Avoids coupling the sender of a request to its receiver
by giving more than one object a chance to handle the
request. Chain the receiving objects and pass the
request along the chain until an object handles it

Client

1 -handler

T

HelpHandler

handler

+handleHelp() + — &+ — — —

I

Application

+handleHelp()

+showHelp()

handler

anApplication

handler

handler.handleHelp() ﬁ

Dialog

+handleHelp()
+showHelp()

Button

+handleHelp()

+showHelp()~ T

W

if (can handle)
showHelp()

else
super.handleHelp()

32

AfATB Applicability

+ More than one object may handle a request, and the
handler isn’t known a priori. The handler should by
ascertained automatically

+ You want to issue a request to one of several objects
without specifying the receiver explicitly

+ The set of objects that can handle a request should be
specified dynamically

33

AOT
LAB

Client

Class Diagram

1 -successor

\/

Handler

+handleRequest() { — 1 — - successor.handleRequest()

ConcreteHandler1

+handleRequest()

ConcreteHandler2

+handleRequest()

34

A?}—B Command Design Pattern

¢ Encapsulates a request as an object, thereby letting
you parameterize clients with different requests, queue
or log requests, and support undoable operations

-command
Application k> Menu o Menultem Command
1 * 1 = 1 1
+add(in doc : Document) <> +add(in m : Menultem) +clicked() +execute()
: \ 2
L command.execute()
'appl|cat|0n l Document
-document PasteCommand AddCommand
+open()
+close()
+cut() 1 1 +execute() +execute()
+copy() / +askUser() | string
+paste() \
document.paste() \\
1 \
\

\

name = askUser()
doc = new Document(name)

application.add(doc)
doc.open()

35

AfATB Applicability (1/2)

+ Parameterize objects by an action to perform. You can
express such parameterization in a procedural language
with a callback function, that is, a function that’s registered
somewhere to be called at a later point. Commands are an
object-oriented replacement for callbacks

+ Specify, queue, and execute requests at different times. A
Command object can have a lifetime independent of the
original request. If the receiver of a request can be
represented in an address space-independent way, then
you can transfer a command object for the request to a
different process and fulfill the request there

36

AfATB Applicability (2/2)

¢ Support undo. The Command’s Execute operation can
store state for reversing its effects in the command
itself

¢ Support logging changes so that they can be reapplied
In case of a system crash

¢ Structure a system around high-level operations built
on primitive operations. Such a structure is common in
iInformation systems that support transaction

37

AOT
LAB

Client

Class Diagram

-command
Invoker Command
1 1
+execute()
Receiver -receiver ConcreteCommand
+action() 1 1 +9xecute()

«instantiate»

z

receiver.action()

d 0
|
|
|
|
|
|
|
|
|
|
|
|

38

AOT |
LAB Iterator Design Pattern

+ Provides a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation

Collection Client

Iterator

+createlterator() : Iterator :Eresit(z)

T +isDone()

«instantiate»

Stack

List Stacklterator Listlterator
+createlterator() : Iterator Icrc')eagelterator() - Iterator +first() +first()
+append() +pu2h 0 1 1 [|+next() +next()
+remove() +'f)o 0 +isDone() +isDone()
+get(in index) P

l
1

«instantiate»

__

39

AfATB Applicability

+ Access an aggregate object’s contents without
exposing its internal representation

+ Support multiple traversals of aggregate objects

+ Provide a uniform interface for traversing different

aggregate structures (that is, to support polymorphic
iteration)

40

AOT
LAB

Aggregate

Client

Class Diagram

Iterator

+createlterator() : Iterator

AN

ConcreteAggregate

+first()
+next()
+isDone()

AN

Concretelterator

+createlterator() : Iterator

«instantiate»

Hfirst()
+next()
+isDone()

41

AfATB Observer Design Pattern

+ Defines a one-to-many dependency between objects
so that when one object changes state, all its
dependents are notified and updated automatically

-observer

Subject Observer
-subject

+attach(in o : Observer) +update()

+detach(in o : Observer) 1 1
+notify()

for all observers
observer.update()

StockMarket TextArea BarChart
-data[] : float
: +update() +update() <
+getData() : float L oRnt(in datal) e)
/ N
/ N
/ N
data = subject.getData() g?;\?v (:d;‘zgleCt-getData()
print(data)

42

AfATB Applicability

+ \When an abstraction has two aspects, one dependent
on the other. Encapsulating these aspects in separate
objects lets you vary and reuse them independently

+ \When a change to one object requires changing
others, and you don’t know how many objects need to
be changed

+ \When an object should be able to notify other objects
without making assumptions about who these objects
are. In other words, you don’t want these objects
tightly coupled

43

AOT
LAB

[}

Class Diagram

Subject

+attach(in o : Observer)
+detach(in o : Observer)

+notify()

for all observers
observer.update()

ConcreteSubject

+getState()

* -observer
Observer
-subject
+update()
1 /\
ConcreteObserver
+update()
7
subject.getState()

44

A?ATB State Design Pattern

+ Allows an object to alter its behavior when its internal
state changes. The object will appear to change Iits

class

TCPConnection TCPState

-state

+open() . > +open()

+close() \\ 1 1 +close()

+acknowledge() +acknowledge()
\ /\

\
\

\

state.open() ﬁ TCPEstablished TCPListen TCPClosed

+open() +open() +open()
+close() +close() +close()
+acknowledge() +acknowledge() [|+acknowledge()

AfATB Applicability

+ An object’s behavior depends on its state, and it must
change its behavior at run-time depending on that
state

+ Operations often depend on the object’s state that is
usually represented by one or more enumerated

constants. Often, several operations contain this same
conditional structure

+ The State pattern puts each branch of the conditional
INn a separate class. This lets you treat the object’s
state as an object in its own right that can vary
iIndependently from other objects

46

AOT
LAB

Context

Class Diagram

+request() |

-State State
>
1 1 +handle()
\ /\
\
\
\m
state.handle()
ConcreteStatel ConcreteState?
+handle() +handle()

47

AOT
LAB

+ Defines a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it

Document

Strategy Design Pattern

-alignment

Alignment

+format() 1

\
\
\
\
\

alignment.align()

1 +align()
AN
Left Center Justify
+align() +align() +align()

48

AfATB Applicability

+ Many related classes differ only in their behavior.
Strategies allow the configuration of a class with one of
many behaviors

* You need different variants of an algorithm (e.g., to
manage different space/time trade-offs). Strategies can be
used implementing such algorithms through as a class
hierarchy

+ Strategies avoid exposing complex, algorithm-specific data
structures

+ A class defines many behaviors, and these appear as
multiple conditional statements in its operations. Instead of
many conditionals, move relate conditional branches into

their own Strategy class
49

AOT
LAB

Class Diagram

Context -Strategy Strategy
+execute() 1 1 +algorithm()
N /\
\
\
\
\
strategy.algorithm()
ConcreteStrategy1 ConcreteStrategy?2

+algorithm()

+algorithm()

50

AfATB Design Anti-Patterns

+ An anti-pattern is a common practices that are known

to lead problems which might not become evident until
much later

+ Design anti-patterns define a well-known and publicly
recognized way to identify and prevent the common
mistakes and problems in software design

¢ Design anti-patterns describe commonly known and
tested countermeasures to an anti-pattern solution in
the form of a re-factored solution

51

AfATB Famous Anti-Pattern

+ Big ball of mud
= A system with no recognizable structure
+ Blob
= Too much functionality in a single design element
+ Gas factory
= An unnecessarily complex design
* Input kludge
= Failing to specify and implement handling of possibly invalid
iInput
+ |nterface bloat

= Making an interface so powerful that it is too hard to

Implement
52

