AOT
LAB

Agent and Object Technology Lab
Dipartimento di Ingegneria dell'Informazione
Universita degli Studi di Parma

Software Engineering

Design

Prof. Agostino Poggqi

AOT _ o
LAB Design Definition

+ Design is the process of applying various techniques
and principles for the purpose of defining a device, a
process, or a system in sufficient detail to permit its

physical realization

+ The goal of design is to produce a model or
representation that:

= Can be reasoned about

= May later be built

AOT _ o
LAB General Design Guidelines

+ Exhibit a modular organization that make intelligent
use of control among components

* Logically partitioned into components that perform
specific tasks and subtasks

+ Describe both data and procedure
+ | ead to interfaces that reduce complexity

¢ Derived using a repeatable method driven by
Information gathered during requirements

AOT _
LAB Good Design Features

+ The design must implement all the explicit
requirements contained in the analysis model, and it
must accommodate all of the implicit requirements
desired by the customer

+ The design must be a readable, understandable guide

for those who generate code and for those who test
and subsequently support the software

+ The design should provide a complete picture of the
software, addressing the data, functional, and
behavioral domains from an implementation
perspective

AOT _ o
LAB Fundamental Design Principles

+ Abstraction
+ Refinement
+ Modularity

¢ Cohesion

¢ Coupling

AOT .
LAB Abstraction

+ Abstraction allows to focus on the important aspects of
a problem at a particular level without the hindrance of
unnecessary or irrelevant detall

+ Abstraction allows the description of a system as a
layered structure:

= The higher the level, the less detall

= The lower the level, the more detall

AOT .
LAB Refinement

+ Top-down process where in each step, one or several

Instructions of the given program are decomposed into
more detailed instructions

¢ Basic idea is:

= Start with a high-level specification of how a problem can be
solved

= Break this down into a small number of problems
* For each of these problems do the same
* Repeat until the sub-problems may be solved immediately

* |s not appropriate for large-scale, distributed systems
and is mainly applicable to the design of methods

AOT
LAB

Problem
Oriented

A

Repres:entation

v

Computer
Oriented

Design Space and Refinement

Abstract Specification

Algorthn

|

. e -
Functional Object-Qrignted ~ Data-Qriented

I .
Decomlposmon Désign Design

Program Data Type

>

Instructions <«----oooimioo oo » Predicates

Procedures

AOT .
LAB Modularity

¢ Divide software into separate components that are
Integrated to solve problem requirements

+ Modularity allows to reduce complexity, facilitate
change, make easier implementation and facilitate
parallel development

+ A design method can be called "modular" only if it
supports modular decomposability, composability,
understandability, continuity and protection

AOT _ _
LAB Modularity Requirements

+ Modular decomposabillity

= A software problem can be divided into a small number of
less complex sub problems, connected by a simple structure,
and independent enough to allow further work to proceed
separately on each item

+ Modular composability

= Some software elements can be combined with each other to
produce new systems, possibly in an environment quite
different from the one in which they were Iinitially developed

10

AOT

LAB Modularity Requirements

+ Modular understandability

= A human reader can understand each module without having
to know the others, or, at worst, by having to examine only a
few of the others

+ Modular continuity

= A small change in the problem specification will trigger a
change of just one module, or a small number of modules

+ Modular protection

* The effect of an abnormal condition occurring at run time in a
module will remain confined to that module, or at worst will
only propagate to a few neighboring modules

11

AOT _ o
LAB Modular Design Principles

¢ Linguistic modular units

= Modules must correspond to linguistic units in the language
used (e.g., Java packages)

¢ Few Interfaces

= Every module should communicate with as few others as
possible

¢ Small interfaces

* |f any two modules communicate, they should exchange as
little information as possible

12

AOT _ o
LAB Modular Design Principles

+ EXplicit interfaces

= |f any two modules communicate, it must be obvious (e.g., it
must be described in the design documentation)

¢ |Information hiding

= All information about a module should be private to the

- = = 4

module unless it is specifically declared otherwise

= |nterfaces are the means for the access to the module
Information

13

AOT

LAB Modularity Tradeoff

cost of module development cost

software \

~ module
integration
cost

optimal number _/ number of modules
of modules

14

AOT
LAB

+ Measure of the closeness of
the relationships between
elements of a component or
module of a system

¢ Strong cohesion is desirable
because:

= Simplifies correction, change
and extension

= Reduces testing

= Promotes reuse

Cohesion

Coincidental cohesion
Logical cohesion
Temporal cohesion

Procedural cohesion

Communicational cohesion

Sequential cohesion
Functional cohesion

Object cohesion

Low

High

15

AOT .
LAB Cohesion Types

¢ Coincidental cohesion
= Elements are not related but simply bundled for convenience

+ Logical cohesion

= Elements that perform similar functions, have a similar input
and error handling

¢+ Temporal cohesion

= Elements that are activated at a common time, have a
common startup and shutdown

+ Procedural cohesion
* Elements make up a single control sequence

16

AOT .
LAB Cohesion Types

¢ Communicational cohesion

* Elements operate on the same input or produce the same
output

¢ Seguential cohesion

* Elements share or operate on shared data (e.g., output of
one element is input for another)

¢ Functional cohesion

* Elements devoted to achieving a single functional
requirement (only access to necessary data/functions)

¢ Object cohesion

= Only object operations allow object attributes to be modified
or inspected (information hiding)

17

AOT
LAB

¢ Measure of interconnection
among modules

+ With strong (tight) coupling,
modules are highly
dependent on each other

+ With weak (loose) coupling,
modules are largely
iIndependent

Coupling

No direct coupling
Data coupling
Stamp coupling
Control coupling
External coupling
Common coupling
Premature binding

Content coupling

Weak
A

Strong

18

AOT .
LAB Coupling Levels

+ No direct coupling

= No dependencies

+ Data coupling

= Only necessary data passed as arguments

¢ Stamp (data structure) coupling

» Data structure passed by argument list and only some is
used

¢ Control coupling

* Interface by passing flags and other parameters

19

AOT .
LAB Coupling Levels

¢ External coupling

= Ties to devices or device drivers

¢ Common coupling

= Use of global variables

+ Premature binding

= Use of numbers and other values throughout a program

¢ Content coupling
= Modifies the statements/data of another module

= Branch to middle of a module

20

AOT _
LAB Process Design Stages

¢ Problem understanding

* Look at the problem from different angles to discover the
design requirements

¢ |dentify one or more solutions

» Evaluate possible solutions and choose the most appropriate
depending on the designer's experience and available
resources

¢ Describe solution abstractions

= Use graphical, formal or other descriptive notations to
describe the components of the design

+ Repeat process for each identified abstraction
until the design is expressed In primitive terms

21

AOT
LAB

Requirements
specification

Design Process Phases

Architectural Abstract Interface Component Data structure Algorithm
design specification design design design design
V y " y
System Software Interface Component Data structure Algorithm

architecture specification

specification

specification specification specification

\

\

Specifies subsystems

Designs data structures

Describes subsystem interfaces

Designs Algorithms

|dentifies subsystems

Decomposes sub-systems into components

AOT
LAB Object-Oriented Design

+ Design focuses on modeling how the functionality
captured in the analysis model will be implemented

+ The designh model is a refinement and elaboration of
the analysis model, with added detail and technical

solutions where:
= Each analysis class is realized as one or more design
classes or interfaces

= The goal is also to determine the physical layout
(deployment) of the system

+ The resulting design is used as the basis of source
code production

23

AOT _ _ _
LAB Object-Oriented Design Goals

+ Object-oriented analysis focuses primarily on the
describing problem domain itself

+ Object-oriented design reexamines the domain with an
eye to practical concerns

¢ Main

agoals of desi
|3\J WA

an are:
3 I GAl \wa

= Reuse: factor out common code In abstract classes

* Performance tradeoffs: efficiency versus effectiveness

24

AOT _ _
LAB Alternative Design Approaches

¢ Designing to an implementation:
= Specific classes are connected

» Used to keep things simple (but rigid)

¢ Designing to a contract:

= A class is connected to an interface that may have many
possible realizations

» Used to make things flexible (but possibly more complex)

25

AOT .
LAB Design Classes

+ Design classes refine analysis classes to include
Implementation details

+ One analysis class may be realized by any number of
design classes

+ Design classes also arise from consideration of the
solution domain

= Utility class libraries, middleware, GUI libraries, reusable
components, etc.

26

AOT

LAB Well-Formedness Classes

+ Completeness

* The class does no less than its clients may reasonably
expect

+ Sufficiency

* The class does no more than its clients may reasonably
expect

¢ Primitiveness

= Services should be simple, atomic, and unigue

27

AOT

LAB Well-Formedness Classes

+ High cohesion

= Each class should embody a single, well-defined abstract
concept

= All the operations should support the intent of the class

¢ Low coupling

= A class should be coupled to just enough other classes to
fulfill its responsibilities

= Only couple two classes when there is a true semantic
relationship between them

= Avoid coupling classes just to reuse some code

28

AOT

LAB Design Classes Specification

+ Full specification of attributes
= Type
= Visibility
= Default values
+ Full specification of operations
= Parameter lists
= Return types
= Visibility
= Exceptions
= Behavior

+ Full specification of constructors / destructors

29

AOT _ L
LAB Operations ldentifications

¢ Operations are extracted from the interaction diagrams
that realize the analysis use cases

+ |dentifying the operations to be allocated to the various
classes is easy

¢ Determining to which class each operation should be
allocated is hard

30

AOT _ _ o
LAB Operations Allocation Criteria

+ Responsibility-driven design

» |f a class, Client, sends a message to another class, Server,
telling it to do something, then it is the responsibility of the
class, Server, to perform the requested operation

¢ Inheritance

= |[f an operation can be applied to the instances of a

superclass and to the instances of its subclasses, then the
operation must be assigned to the superclass

¢ Polymorphism and dynamic binding

= |[f an operation can be applied to the instances of the
subclasses, but not to the instances of the superclass, then
an abstract operation is defined in the superclass, and its

Implementation is realized in the different subclasses
31

AOT _ _ _
LAB Design Relationships

+ Design relationships are a refinement of analysis
relationships

* The design model specifies how the relationships will be
realized

+ All design relations must have multiplicity and
navigability (i.e., directionality)

+ All design relations should name the target end with a
role

32

AOT _ _ _
LAB Aggregation Relationship

+ \Whole-part relationship where objects of one class act
as the whole or aggregate, and objects of the other
class act as the parts:

* The whole uses the services of the parts

The parts perform the requests of the whole

= The whole is the dominant, controlling side of the relationship

The part tends to be more passive

33

AOT _ _ _
LAB Aggregation Relationship

+ An aggregation relationship is transitive:

= A part of a part is a part of the whole

+ An aggregation relationship is asymmetric:
= A whole can never directly or indirectly be a part of itself

= There must never be a cycle in the aggregation graph

+ There are two kinds of aggregation relationship:
= \Weak aggregation (named aggregation)
= Strong aggregation (named composition)

34

AOT _ _
LAB Aggregation Semantics

+ The aggregate can sometimes exist independently of
the parts, sometimes not

+ The parts can exist independently of the aggregate

¢+ The aggregate is in some way incomplete if some of
the parts are missing

+ |t is possible to have shared ownership of the parts by
several aggregates

+ Aggregation hierarchies and networks are possible

+ The whole always knows about the parts, but if the
relationship is one-way from the whole to the part, the
parts don't know about the whole

35

AOT

LAB

+ Aggregation is like a computer and its peripherals:

A computer is only weakly related to its peripherals

Peripherals may come and go

Peripherals may be shared between computers

Peripherals are not in any meaningful sense "owned" by any
particular computer

Aggregation Example

36

AOT

LAB Composition Semantics

+ The parts belong to exactly one composite at a time
+ The composite has sole responsibility for the
disposition of all its parts
= This means responsibility for their creation and destruction

+ The composite may also release parts, provided
responsibility for them is assumed by another object

If the composite Is destroyed, it must destroy all its
parts or assign them to some other composite
¢ Each part belongs to exactly one composite

= Composition hierarchies are possible
= Composition networks are impossible

4

37

AOT .
LAB Composition Example

¢+ Composition is like a tree and its leaves:
= Leaves are owned by exactly one tree
* | eaves can't be shared between trees

= When the tree dies, its leaves go with it

38

AOT Refining Analysis Associations
LAB with Aggregation

+ Add multiplicities and role names

¢ Decide which side of the relationship is the whole and
which is the part

+ L ook at the multiplicity of the whole side:

= ifitis 1, itis possible to use composition:

- Check whether the association has composition semantics, then apply
composition else apply aggregation

= [fitisnotl
- Use aggregation

¢ Add navigability from the whole to the part

39

AOT A B

LAB 1 1

+ When is possible the use of composition, then analysis
one-to-one associations can be represented in three
different ways:

A B
>
= A composition association 1 1
. AB
= A merging of the two classes
= An attribute A
Bb

+ Composition cycles must be avoided

AOT A B
LAB .

+ Analysis many-to-one associations cannot be
represented by composition associations, but by
aggregation associations

¢ Aggregation cycles must be avoided

41

AOT A B
LAB L

+ Analysis one-to-many associations can be represented
by a composition association through the use of:

= container classes

= Inbuilt arrays

+ Container classes are more flexible than inbuilt arrays
and often are faster than arrays when the searching of
specific elements is required

+ Inbuilt array are faster than container classes when the
searching of specific elements is not required

42

AOT
LAB

+ Model the container A

class explicitly

Vector

+ Tell the container class to use
by adding a property to the

relationship

¢ Tell the programmer what
container class semantics are
required by adding a property

to the relations

¢ Leaveituptot

nip

ne programmers

o

43

AOT Refining Analysis Associations
LAB with Reification

+ Relfication has the meaning of regarding or treating an
abstract thing as if it had concrete or material existence

+ |n the object-oriented context, reification is the
characterization of ‘something’ in terms of objects

* |n the context of the design, this technique is often
applied to relationships between objects or possible
states of objects in order to show them as objects or
relationships between objects

44

AOT

LAB

+ Analysis many-to-many associations cannot be

represented by composition or aggregation
associations

+ Reify the relationship into a class

¢ Decide which side is the whole and use aggregation,
composition, or association as appropriate

— O——

1 = *

45

AOT A B

LAB E

+ Analysis bidirectional associations cannot be
represented by composition or aggregation
associations

+ Replace with a unidirectional aggregation or
composition from whole to part, and a unidirectional
association or dependency from part to whole

46

AOT . [=
LAB -

+ Analysis association classes cannot be represented by
composition or aggregation associations

¢ Decide which side is the whole and which is the part

+ Replace the association class with a normal class

¢+ Add a constraint in to indicate that objects on each end
of the reified relationship must form a unique pair

47

AOT
LAB

Pair constraint}

48

AOT
LAB Use of Interfaces

¢+ |nterfaces allow software to be designed to a contract
rather than to a specific implementation

¢+ |nterfaces separate specification of functionality from
Implementation

+ |f a classifier inside a subsystem realizes a public
Interface, the subsystem or component also realizes
the public interface

+ Anything that realizes an interface agrees to abide by
the contract defined by the set of operations specified
In the interface

49

AOT .
LAB Finding Interfaces

*

*

*

*

*

Challenge associations and messages

Factor out groups of reusable operations, operations
and attributes

Look for classes that play the same role in the system

Look for possibilities for future expansion

Look for dependencies between components

50

AOT _
LAB Use of Inheritance

* |nheritance Is the strongest possible coupling between
two classes

¢ Encapsulation is weak within an inheritance hierarchy,
leading to the "fragile base class" problem:

= Changes in the base class ripple down the hierarchy

+ Very inflexible in most languages

= The relationship is decided at compile time and fixed at
runtime

¢ Only use it when there Is a clear "is a" relationship
between two classes or to reuse code

o1

AOT _
LAB Inheritance Types

+ Implementation inheritance

*= Developers reuse code quickly by sub-classing an existing
class and refining its behavior

- Is not good for reuse

¢ Specification inheritance

* The classification of concepts into type hierarchies, so that an
object from a specified class can be replaced by an object
from one of its subclasses

52

AOT _
LAB Inheritance Types

¢ Specialization

= Handle differences in behavior between parent and child for
the same task

= Qverride some parent methods
- Refinement: call parent method and then do something extra

- Replacement: just do something different

¢ Extension

* Add to the functionality of parent by adding new data and
behaviors

53

AOT Requirements for Using
LAB Multiple Inheritance

+ The multiple parent classes must all be semantically
disjoint

+ There must be an "is kind of" relationship between a
class and all of its parents

+ The substitutability princ

e
and its parents

3
<
5

+ The parents should themselves have no parent in
common

54

AOT .
LAB Use of Nesting

+ Nesting allows the definition of a class inside another
class

+ The nested class exists in the namespace of the outer
class

= Only the outer class can create and use instances of the
nested class

+ Nested classes are used for implementation
convenience rather than for information hiding

55

AOT .
LAB Use of Delegation

+ Delegation refers to one object relying upon another to
provide a specified set of functionalities

+ A class is said to delegate to another class if it
Implements an operation by resending a message to
another class

+ Delegation can be used for:
= To ensure a class only talks to its neighbors
* To avoid duplicating functionality in more than one class

* To reuse code without abusing inheritance

56

