
Agent and Object Technology Lab
Dipartimento di Ingegneria dell’Informazione

AOTAOT
LABLAB Dipartimento di Ingegneria dell Informazione

Università degli Studi di ParmaLABLAB

Software Engineering

Software DevelopmentSoftware Development

P f A ti P iProf. Agostino Poggi

AOTAOT
LABLAB Software Development Process

A process defines who is doing what, when to do it,
and how to reach a certain goal

A software development process is a structured set of
ti iti i d t d l ft tactivities required to develop a software system

2

AOTAOT
LABLAB Software Development Process

Requirements
Feasibility and

Planning

Design

Operation andI l t ti Operation and
Maintenance

Implementation

3

AOTAOT
LABLAB Waterfall Model

Requirements

System Software

q
Definition

System Software
Design

ImplementationProgramming
and Unit Testing

Implementation

Integration and
System Testing

Operation and
Maintenance

4

Maintenance

AOTAOT
LABLAB Requirements Analysis and Definition

System services, constraints and goals are established
b lt ti ith tby consultation with system users

Requirements are then defined in a manner that isRequirements are then defined in a manner that is
understandable by both users and development staff

This phase can be divided into:
Feasibility study (often carried out separately)Feasibility study (often carried out separately)

Requirements analysis

Requirements definition

Requirements specification

5

AOTAOT
LABLAB System and Software Design

One or more models of the system are defined
Models represent the system at different levels of detail

Thi h i di id d i t ti itiThis phase is divided in two activities:
System designy g

• Identifies hardware and software components

E t bli h ll t hit t• Establishes an overall system architecture

Software design

• Represents the software system functions in a form that
can be transformed into one or more executable programs

6

AOTAOT
LABLAB Programming and Unit Testing

System components defined in the design phase are
i l t d d t t dimplemented and tested

Thi h i di id d i t ti itiThis phase is divided in two activities:

Software components are realized as a set of programs orSoftware components are realized as a set of programs or
program units

W itt ifi ll• Written specifically

• Acquired from elsewhere, or modifiedq

Software components are separately tested against
specifications

7

specifications

AOTAOT
LABLAB Integration and System Testing

Program units are integrated and tested for realizing
th l t tthe complete system

• This phase is divided in four activities:

Component integration• Component integration

• Integration testIntegration test

System requirements test

System deliver to the client

8

AOTAOT
LABLAB Operation and Maintenance

The system is put to use and clients are supported

• This phase is divided in four activities:

Operation: the system is put into practical use

Maintenance: errors and problems are identified and fixed

E l ti th t l ti i tEvolution: the system evolves over time as requirements
change, to add new functions or adapt the technical
environmentenvironment

Phase out: the system is withdrawn from service

9

AOTAOT
LABLAB Feedback in the Waterfall Model

Requirements
D fi iti

System and

Definition

System and
Software design

Programming
and Unit Testing

Integration and
System Testing

Operation and
Maintenance

10

Maintenance

AOTAOT
LABLAB Advantages / Disadvantages

Advantages
Documentation and clearly defined phases
Maintenance easier (assuming up-to-date docs available)

Di dDisadvantages
Complete and frozen specification document up-front often
not feasible in practicenot feasible in practice
Customer involvement in the first phase only
Sequential and complete execution of phases often notSequential and complete execution of phases often not
desirable
Process difficult to control
The product becomes available very late in the process

• Significant risk of building the “wrong” system

11

AOTAOT
LABLAB Applicability

The main drawback of the waterfall model is the
diffi lt f d ti h ft th idifficulty of accommodating change after the process is
underway

One phase has to be complete before moving onto the next
phase

Only appropriate when the requirements are well-
understood and changes will be fairly limited during theunderstood and changes will be fairly limited during the
design process

Mostly used for large systems engineering projects
where a system is developed at several sites

12

AOTAOT
LABLAB Project Failure Causes

Inaccurate understanding of end-user needs

Inability to deal with changing requirements

Modules that do not fit together

Software that is hard to maintain or extendSoftware that is hard to maintain or extend

Late discovery of serious project flawsy p j

Poor software quality

Unacceptable software performance

U t t th b ild d l
13

Untrustworthy build-and-release processes

AOTAOT
LABLAB Project Failure Causes

Ad hoc requirements management

Ambiguous and imprecise communication

Brittle architectures

Overwhelming complexityOverwhelming complexity

Undetected inconsistencies in requirements, designs q g
and implementations

Insufficient testingInsufficient testing

Subjective assessment of project status

14

j p j

AOTAOT
LABLAB Agile Software Development

Agile software development is a conceptual framework
for software engineering that promotes development
iterations throughout the life-cycle of the project
Agile methods emphasize face-to-face communication
over written documents

Most agile teams are located in a single open office
sometimes referred to as a bullpen
At a minimum, a team includes programmers and their
"customers"
Agile methods also emphasize working software as the
primary measure of progress producing very little written
d t ti l ti t th th d

15

documentation relative to other methods

AOTAOT
LABLAB Agile Software Development

Software developed is based on unit called iterations,
hi h ll l f f kwhich usually may last from one to four weeks

Each iteration is an entire software project: including
planning, requirements analysis, design, coding,
testing, and documentation
An iteration may not add enough functionality to
warrant releasing the product to marketg p
Iteration goal is to have an available release (without
bugs) at the end of each iterationbugs) at the end of each iteration
At the end of each iteration, the team re-evaluates
project priorities

16

project priorities

AOTAOT
LABLAB Agile Methodologies Principles

Customer involvement

Incremental deliveryIncremental delivery

A f l t thA focus on people, not the process

Embracing of change and maintaining simplicity

Best suited for small or medium sized systems

17

AOTAOT
LABLAB Agile Manifesto

Customer satisfaction by rapid, continuous delivery of
useful software

W ki f i d li d f l (k hWorking software is delivered frequently (weeks rather
than months)

Working software is the principal measure of progress

Even late changes in requirements are welcomed

Close, daily, cooperation between business people and
developers

18

developers

AOTAOT
LABLAB Agile Manifesto

Face-to-face conversation is the best form of
communication

Projects are built around motivated individuals whoProjects are built around motivated individuals, who
should be trusted

Continuous attention to technical excellence and good
design

Simplicity

Self-organizing teams

Regular adaptation to changing circumstances
19

Regular adaptation to changing circumstances

AOTAOT
LABLAB Agile Methodologies Best Practices

Developing software iteratively

Managing requirements

Use of component-based architectures

Visually modeling softwarey g

Continuously verifying software qualityy y g q y

Controlling changes to software

20

g g

AOTAOT
LABLAB Iterative Refinement

Iterative development is a rework scheduling strategy
i hi h ti i t id t i d i t fin which time is set aside to revise and improve parts of
the system

The goal of iterative refinement (evolutionary
d l t) i t t thi ki i kldevelopment) is to get something working as quickly as
possible

The initial implementation is refined until system is p y
complete on the basis of client and user comment

21

AOTAOT
LABLAB Iterative Refinement Techniques

Vaporware: user interface mock-up

Throw-away software componentsThrow away software components

D d lDummy modules

Rapid prototyping: RAD tools

Incremental refinement

22

AOTAOT
LABLAB Iterative Refinement

R iE l i RequirementsEvaluation

DesignImplementation

23

DesignImplementation

AOTAOT
LABLAB Iterative Refinement

Initial
VersionR i

Outline

VersionRequirements

Outline
Description Design

Intermediate
Versions

Implementation
Final Version

24

AOTAOT
LABLAB Applicability

The main problems of iterative refinement are:
Lack of process visibility

Systems are often poorly structuredSystems are often poorly structured

Special skills (e.g. in languages for rapid prototyping) may be
requiredrequired

Iterative refinement can be used with success for:Iterative refinement can be used with success for:
Small or medium-size interactive systems

Parts of large systems (e.g., the user interface)

Short-lifetime systems

25

y

AOTAOT
LABLAB Extreme Programming

Extreme Programming (XP) is probably the best known
and most widely used agile method

I XP ll i d b iIn XP all scenarios are represented by user stories
implemented as a series of tasks

Programmers work in pairs and develop tests for each
t k b f iti d d ll t t t b t dtask before writing code and all tests must be executed
when new code is integrated into the system

XP is based on four activities: listening, design, coding
and testing

26

and testing

AOTAOT
LABLAB Extreme Programming

Select user
stories for the

Breakdown
stories into Plan release

current iteration tasks

Develop integrateReleaseEvaluate Develop, integrate
and test software

Release
software

Evaluate
System

27

AOTAOT
LABLAB Unified Process

Unified Process (UP) is not simply a process, but
rather an extensible framework which should be
customized for specific organizations or projects
UP is guided by use cases and is based on early risks
identification and managementg
UP is architecture-centric because the architecture sits
at the heart of the project efforts to shape the systemat the heart of the project efforts to shape the system
UP is an development process where each iteration
results in an increment which is a system release that:results in an increment, which is a system release that:

Contains added or improved functionality

28

Includes work in most of the process disciplines

AOTAOT
LABLAB Unified Process

29

AOTAOT
LABLAB Model Driven Development

Model driven development refers to the systematic use
of models as primary engineering artifacts throughout
the development lifecycle
Model driven development is based on the
transformation of a model to an executable programp g

Sometimes models are constructed to a certain level of
detail, and then code is written by hand in a separate step
Sometimes complete models are built including executable
actions

• Code can be generated from the models, ranging from
system skeletons to complete, deployable products

30

AOTAOT
LABLAB Model Transformation

F d i i RefactoringForward engineering g

M d l S C d SModel Space Code Space

Reverse engineering
Model transformation

31

AOTAOT
LABLAB Applicability

The main drawback of the model driven development
are:

Need for specialized skills and training to apply the technique

Difficult to formally specify some aspects of the system such
as the user interface

Suitable for critical systems especially those where aSuitable for critical systems especially those where a
safety or security case must be made before the
system is put into operation

32

system is put into operation

AOTAOT
LABLAB Model Driven Architecture

Model Driven Architecture (MDA) is an approach to
ft d l t th t id t f id lisoftware development that provides a set of guidelines

for structuring specifications expressed as models for
the realization of system for different technologicalthe realization of system for different technological
platforms

MDA provides a means for using models to direct the
course of the phases of the development of a system

In particular, MDA uses three types of model:
Platform Independent Model (PIM)Platform Independent Model (PIM)
Computational Independent Model (CIM)
Platform Specific Model (PSM)

33

p ()

AOTAOT
LABLAB Model Driven Architecture

Requirements Mostly Text
D tRequirements

A l i CIM/PIM

Documents

Analysis CIM/PIM

Low-level Design

C d

PSM

Coding Code

Testing Code

34

Deployment

