AOT
LAB

Agent and Object Technology Lab
Dipartimento di Ingegneria dell'Informazione
Universita degli Studi di Parma

Software Engineering

UNIFIED "ll;:::"
MODELING |14 /)
LANGUAGE | |

Prof. Agostino Poggi

What is UML?

The Unified Modeling
Language (UML) is the
standard language for
visualizing, specifying,
constructing, and
documenting the artifacts
of a software intensive
system

AOT .
LAB What is UML?

¢ |s a language and notation system used to specify,
construct, visualize and document models of software

systems

+ |s not a methodology (which considers the specific
framework and conditions of an application domain, the
organizational environment and many other things)

AOT
LAB Why Use UML?

* Provides multiple diagrams for capturing different
architectural views

¢ |s a standard language for visualizing, specifying,
constructing, and documenting software systems

+ Tool support and interoperability improves in time, as
UML, OCL, and XMl are still relatively young standards

AOT
LAB

Improve Project
Communications

Better

Requirements...

Easier to maintain

Faster Development

Fewer Defects

Why Use UML?

fleo

O o T N EE [R

20 40 60 80

Source: BZ Research,
August 2004

UML History

[_ .
(LML 1.2} Remainad unofficial
- O 1998 due i lewsult
[OMG obtalns UL 1.3
copymight in LML O 1999
150 secaptance \
109400
(ISC/DIN 18501-1) UML14
OMG 2001
UL 1.5
OMG 2003
i
ocup I.IHL 2.0
cartiflcatfon

AOT _
LAB UML Notation Goals

+ Simple because it requires only a few concepts and
symbols

* EXpressive because it is applicable to a wide spectrum
of systems and life cycle methods

+ Useful because it focuses only upon those necessary
elements to software engineering

¢ Consistent because the same concept and symbol
should be applied in the same fashion throughout

+ Extensible because users and tool builders should
have some freedom to extend the notation

AOT L
LAB UML Specifications

+ Infrastructure, the foundational language constructs
¢ Superstructure, the user level constructs

¢+ ODbject Constraint Language (OCL), the formal
language used to describe expressions on UML
models

¢+ Diagram interchange, the means enabling a smooth
and seamless exchange of documents compliant to the
UML standard

UML Architecture

AOT Agent and Object Technology Lab

j ¥a Dipartimento di Ingegneria dell'Informazione
LAB Universita degli Studi di Parma

UNIFIED o

woneLG lf Unified Modeling Language

LANGUAGE ||

UML Diagrams

AOT

LAB UML Diagram Types
Structural View Implementation View
Class Composite structural
Object Component

Composite structural
Package

Behavioral View

Sequence
Communication
State

Activity

Timing

Interaction overview

Use Case View
Use Case

Environment View
Deployment

11

AOT .
LAB Use Case View

¢+ The most important architectural view
+ Describes use cases that provide value for the users

+ Essential use cases are used as proof of concept for
Implementation architecture

¢+ Use cases may be visualized in UML use case
diagrams

¢+ Each use case may have multiple possible scenarios

¢ Use case scenarios could be described:
= Using textual descriptions
= Graphically, using UML activity diagrams

12

AOT .
LAB Structural View

+ Represents structural elements for implementing
solution for defined requirements and defines:

* Object-oriented analysis and design elements

= Domain and solution vocabulary

= System decomposition into layers and subsystems
* Interfaces of the system and its components

* |s represented by static UML diagrams:

»= Class diagrams in multiple abstraction levels
* Object diagrams

= Composite structural diagrams

* Package diagrams

13

AOT _ .
LAB Behavioral View

+ Represents dynamic interaction between system
components for implementing requirements

+ Shows distribution of responsibilities and allows to
identify interaction and coupling bottlenecks

+ A means for discussing non-functional requirements:
performance, maintenance, ...

* |s represented by dynamic UML diagrams:

= Sequence diagrams = State diagrams
= Communication * Interaction overview
diagrams diagrams

= Activity diagrams = Timing diagrams

14

AOT

LAB Implementation View

¢ Describes implementation artifacts of logical
subsystems defined in structural view

+ May include intermediate artifacts used in system
construction (code files, libraries, data files, ...)

+ Defines dependencies between implementation
components and their connections by required and
provided interfaces

¢+ |s represented by these UML diagrams:

= Component diagrams
= Composite structural diagrams

15

AOT

LAB Environment View

+ Represents system hardware topology

+ Defines how software components are deployed on
hardware nodes

+ Useful for analyzing non-functional requirements:
reliability, scalability, security, ...

* Provides information for system installation and
configuration

¢+ |s represented by the UML deployment diagram

16

AOT
LAB

Diagram Frame

The heading is a string contained in a name
tag which is a rectangle with cut off corners
In the upper left hand corner of the frame

Each diagram has a

frame, a content
area and a heading

zkind= <name:= ﬂparametﬂ

The frame is a rectangle and
IS used to denote a border

17

AOT |
LAB Use Case Diagram

asubsystamo

ATMsystem
0.1
.—-—'—'l_'_._._._'_._
1
T 0.1
Customer Transfer Funds
A
0.1
Deposit 1
Money 0
,”"”’1”-

Bank
% 1 0.1+ Register ATM _,,""/
i

at Bank 0t

1
Mminish}\‘
0.1
Read Log

18

AOT .
LAB Use Case Diagram

+ A use case describes the proposed functionality of a
system

+ A use case represents a discrete unit of interaction
between a user (human or machine) and the system

¢ This interaction is a single unit of meaningful work, that
may be include a complex interaction between parts

19

AOT

/AB Actor, System Boundary and Use Case

A user of the system
IS 1dentified with the
name of actor

The system
boundary usual

weubeyetarms AT System divides what Is

Inside or outside

whctors
Custormer

Custormer

the system (use
@ cases from actors)

An actor can be also
represented by a class
rectangle with the «actor»
keyword

A single unit of meaningful work
related to a functionality of the system
IS identified with the name of use case

20

AOT
LAB

)R

Custormer Commercial Custamer

An actor can generalize
another actor

bodify Order o el Get Approwal
wextands

A use case may be used to extend the
behavior of another use case

An extension may
be conditioned

Extenszion point: selection

Condition: feustomer selected HELF'}IT

A use case may contain
the functionality of
another use case as part of
their normal processing

Card Identification

cincludes

Ferform Transaction

wextend:s

Extension points:
selaction

On-Line Help

An extension point indicates where
an extending use case Is added

Generalization and Composition

21

AOT o
LAB Multiplicity

A use case diagram «subsystems

ATMsystem
can contain several | 0.1 @
use cases and actors |
N
Customer Transfer Funds
i
0.1

Deposit 1
Money o
,”"’”1”-

Bank
1 0.1+ Register ATM _,/"'/’
\‘L\‘H‘E at Bank o

Adminisiratar

0.1
Read Log

The uses connector can optionally
have multiplicity values at each end

22

AOT
LAB

Class Diagram

Account AddressBook
#* name: Siring * name: Sring
% emaildddress: Siring +laApessedBy #lzes
= + getMame() : Siring
+ getMame(): Sring 1 + setMame{Sring) : woid
+ setMame{STring] : woid +lzZontainedin Q.7 + getContacl() : Contact
+ getEmailiddress() : Sring 4l + getContacts) : Contacts]]
+ setEmailAddress{Siring) : woid + insertContactContact) : woid
-lzCantainedin 1
-Contains a.-
Contact
+Contai -
name: Siring rains ﬂ{;{'d
% primanyContactMethed: Siring i k]
- emailAddress: String +Child 0.7
- faxMumber. Sfring ContactGroup
#_ontains +GroupedBy " - S #Parent 1
+ gethamef : Shing name: =ing
+ setMame{Sting} : woid 1 a.r N)
etha : 5ir
+ setPrimanyContactMethod{Shing) : void N gEmE:;{émn ':I"_gwi q
+ getPrimanContactMethod{S5tring) : woid e
+ getEmailaddress{) ; String
+ setEmailAddress{String) : woid
+ getFaxNumber) : Siring
+ setFaxMumbes{String) : woid

23

AOT .
LAB Class Diagram

+ A class diagram shows the building blocks of an object-
orientated system

+ Class diagrams depict a static view of the model, or
part of the model, describing what attributes and
behavior it has rather than detailing the methods for
achieving operations

+ Class diagrams are most useful in illustrating
relationships between classes and interfaces

+ Generalizations, aggregations, and associations are all
valuable in reflecting inheritance, composition or
usage, and connections respectively

24

AOT
LAB

Rectangle

Class

length: doucle
- width: dgoutle
canter: Paoint = 410,10}

display{) : void

rernowe]) | void
setWidth{new\Width) : void
setLength{newlLength) : woid
setPosition{pos . Point) : void

* ko b

A class Is represented by a rectangle which
shows the name of the class and optionally
the name of its operations and attributes.
Compartments are used to divide the class
name, attributes and operations

element

The symbol that precedes the
attribute, or operation name, _ o
indicates the visibility of the # 1s protected visibility

+ 1S public visibility
— Is private visibility

~ 1Is package visibility

25

AOT

LAB Interface and Template

zinterface»
IFarson

An interface Is a specification of behavior that
Implementers agree to meet, that is, a contract

fetHame |
fetdddress {

A template defines a pattern
whose parameters represent
types and can be applied to
classes, packages, operations

T, kilnteger |

TList S

element : T[k]
insert(p:T)
remove({p:T)

<<pbind>> <Lecture, 14>

Lecturel.ist

element : Lecture|14]

26

AOT

LAB Association
An association implies two
i +playsF or Flayer model elements have a
p . relationship that usually is

Implemented as an instance
variable in one class

An association is represented by a —
connector that may include named :
roles at each end, cardinality, Seas'j\
direction and constraints o |2 1 ——
{eam \/ goalkeeper
i
For more than two elements, a Heiw -
diamond representation toolbox goals for
element can be used as well et
s

27

AOT
LAB

A generalization is used to
Indicate inheritance.

Drawn from the specific
class to a general class, the
generalize implication is
that the source inherits the
target's characteristics

A nesting Is connector that
shows the source element is
nested within the target
element

Generalization and Nesting

Shape

- x_position: int
- w_position: int

+ display]) : woid

Clas=s

Circle
{:j radius: int
Shape
Circle
- radius: int
LEkape
- x_position: int
- yw_position: int
Ekape
+ display): waid
ImmerClass

28

AOT

LAB Dependency and Realization
«interf ,.
A eson [N
Mailer |-~ getName () EH“*H PassengerInterface
getAddress ()

getName ()
getAddress (}

A dependency is a weaker form of

relationship showing a relationship
between a client and a supplier

A realization is a
relationship between
a specification and
Its Implementation

PassengerInterface
Mailer
@ getName {)
IPerson getAddress {)

29

AOT

LAB Aggregation and Composition
e s An aggregation is used to depict

1 0.” elements which are made up of

+ smaller components
1 o Aggregation relationships are
0. shown by a white diamond-shaped

Contact arrowhead pointing towards the

— target or parent class

)

| of aggregation that is shown by a black
dlamond shaped arrowhead and IS used h e components can be included in a
maximum of one composition at a time

If the container is deleted, usually all of its parts are deleted with it, but a part
can be individually removed without having to delete the container

Compositions are transitive and asymmetric relationships that can be recursive

30

AOT

LAB Association Class

An association class is a construct that allows an association
connection to be defined with a set of operations and attributes

Ernployes Project

W

JabTitle: String FrojectMame: String

Role

Title: String
SecurityLewvel: int
FanTime: boolean

31

AOT
LAB

FrontLeft Wheel

Object Diagram

Margan :Car

FrormtRight ‘Wheel

Car

Fear ‘Wheel

Viheel

32

AOT _ .
LAB Object Diagram

+ An object diagram describes the static structure of a
system at a particular time and may be considered a
special case of a class diagram

+ Whereas a class model describes all possible
situations, an object model describes a particular
situation

+ Object diagrams are useful in understanding and
validating the corresponding class diagrams

33

AOT
LAB

Object

Clas=s
Objact :Class

attribute: int

+ oaperationfint) ; vaid

By default, object elements do
not have compartments and their
names are underlined and may
show the name of the class from
which the object iIs instantiated

Sometimes it is possible to
represent an object’s run time state,
showing the set values of attributes
In the particular instance

Manzger :Employes

last_name ="Smith"
first_ name ="John"
age = 42

34

AOT
LAB

AMheesl

Atheel

Composite Structure Diagram

Car
Clutch| Engine n
(zasP adel
Oriving= hatt T
1 q #Tmnmsﬂun [‘]/:J
. SteeringSystemn |_I I_jS‘tE!E!Iir'Ig".-"'-ﬂ’IE!Ell
| |_|4 [

35

AOT

LAB Composite Structure Diagram

+ A composite structural diagrams shows the internal
structure of a classifier, including its interaction points
to other parts of the system

+ A classifier is an UML element that is described by
attributes and/or methods (i.e., a class, an interface or
a component)

+ A composite structure diagram is similar to a class
diagram, but it depicts individual parts instead of whole
classes

36

A?}B Structured Classifier

A structured classifier represents a class, often an abstract
class, or a component whose behavior can be completely or
partially described through interactions between parts

A part represents a role played at
Class runtime by one instance of a class
- O— or by a collection of instances
Povidediztenace Forl
Fart
Reguiredirtedace
A port is an interaction point
that can be used to connect
An encapsulated classifier structured classifiers with their
IS a type of structured parts and with the environment
classifier that contains ports

37

AOT

LAB
= Ports can optionally
Ciuten| Engine _py gy specify the services
e [J_M‘”QS“E“ Transmission LJ/J they provide and the
services they require
wreet | [Stesringsystom | Latctngenee from other parts of
; T T : the system

Port

Public ports that are visible in the

environment are shown straddling the
boundary, while protected ports that
are not visible in the environment are

Ports can either delegate
received requests to internal
parts, or they can deliver these
directly to the behavior of the
structured classifier that the
port is contained within

shown inside the boundary

38

AOT

Clas=s

Fart

Faort

LAB Exposed Interfaces
A provided interface is shown
as a "ball on a sticl_<'j attached to O
the edge of a classifier element Frovideditteracs
A required interface is shown Requirmdittenace

as a "'cup on a stick™ attached to
the edge of a classifier element.

Frovidedinterdface

o

used for defining the cdel
Internal workings of a
component's external
ports and interfaces

A delegate connector is W

egates

Cormponernt

Class

39

AOT
LAB

A collaboration defines a set of

Illustrate a specific functionality

cooperating roles used collectively to

" [Consnmer : DealParticipant

Produocer : DealParticipant Seller

.....

S ——

Collaboration

- -t -—-|--|-—.|.--|'|---| &uﬁ‘

.Brok:er:Dﬂanmup' ipant |}

el

- “'--Bu}'tr

40

AOT .
LAB Collaboration

a

A role binding connector is .
drawn from a collaboration to ‘ I > —
the classifier that fulfils the role

A represents connector An occurrence connector
may be drawn from a may be drawn from a
collaboration to a classifier collaboration to a classifier
to show that a collaboration to show that a collaboration
represents the classifier IS used In the classifier

" Collabaration e " collaboration Class

P > '. et by

aigprasantsy . - w0 O CCU e Ce

41

AOT
LAB

Component Diagram

Hem Code

Custormer Details

Product

42

AOT _
LAB Component Diagram

¢+ Component diagrams illustrate the pieces of software,
embedded controllers, etc., that will make up a system

+ A component diagram has a higher level of abstraction
than a class diagram

= Usually a component is implemented by one or more classes
(or objects) at runtimes

¢+ Components represent distributable physical units,
Including source code, object code, and executable
code

43

AOT
LAB

OrderProcess

3]

Component Diagram

ComponentB

5]

—

[

Faymsnt
nlinse"Saervices

OrgerEn
—O

try, Tracking

Componentd

wCOIMiponents
ComponentA

Component2

44

Controller

i * Loader

____________ = i = Time

j + ConnSeq

Conn Seq

[+ ConnSeg
i + NetAbstract

Package Diagram

Integer

._ﬁ + Integer

45

AOT .
LAB Package Diagram

+ Package diagrams are used for

= Decomposing a system into logical units of work describing
the dependencies between them

* Providing views of a system from multiple levels of
abstraction

*+ The most common use for package diagrams is to
organize use case diagrams and class diagrams, but
may also be used for the other UML elements

46

AOT

LAB

Merge, Nesting and Import

A merge connector defines an implicit generalization between elements in
the source package, and elements with the same name in the target package

The source element definitions are expanded to include the element
definitions contained in the target

GenApply
B + Losder

i + Time

Controller

i + Shape amerngens

i + Loader

i « Time
3 + ConnSeq

____________ = PH + Integer

A nesting connector
shows that the source
package is fully contained

Integer

ConnSeq

In the target package

i + ConnSeg
i # NetAbstract

IIMV\I'\I" PaValalaVaVat ol

I-\II HHTPUT L LUTITIELLUI
Indicates that the elements
within the target package
use ungualified names
when being referred to
from the source package

47

AOT
LAB

Requested Order

[

Activity Diagram

Receive
Order

[arder rejected]

i

[arder
accepted]

Fill Order

Frocess Order

Ship Order

Send
Inwoice

Inwvoice

Close
Order

48

AOT . .
LAB Activity Diagram

+ An activity diagram is used to display the sequence of
activities

+ Activity diagrams show the workflow from a start point
to the finish point detailing the many decision paths
that exist in the progression of events contained in the
activity

+ They may be used to detall situations where parallel
processing may occur in the execution of some
activities

+ They are useful for business modeling where they are
used for detailing the processes involved in business

49

AOT

LAB Activity and Action

An activity is shown as a round-cornered
rectangle enclosing all the actions, control flows
and other elements that make up the activity

Some constraints
can be attached to
an action

4 ™y

Actiwity

glocalFreConditiony
{A drink i5 s¢lected that the

e A

wanding machine contains}

Dispense
Drink

Perform An action represents a
Action single step within an activity

«lacalPostCandition
{The vending machine

dJispensed the drink selectad}

50

AOT

LAB Control Flow and Endpoint Nodes

A control flow shows the flow of
control from one action to the next

[Send -\'I -___||r Accent

Fayrnent _/.I F_-l._ Fayrent

)

The initial node is
depicted by a large
black spot

. ‘-—-|(- Ferform j
—_
. Action

Il -\I|
[0 }—®

The activity final node
denotes the end of all control
flows within the activity

Close
Order

The flow final node denotes
the end of a single control flow

o1

AOT

LAB Object and Interrupt Flows

An object flow is a path along which objects or data can pass

Exception Handler Node Exceptlon handlers Can
ExgeptionType be modeled on activity
diagrams through the use
of an interrupt flow

Frotected Hode

Cancel Cancel
Request Order

An interruptible activity
region surrounds a group of

actions that can be interrupted H@

52

AOT

LAB Decision-Merge and Fork-Join

[condition is true]

&

[condition is false]

Auiction on
True

ion Mode

The control flows coming
away from a decision node
will have guard conditions
which allow control to flow
If the guard condition is met

Concurrent
Action 1

Concurrernt
Action 2

53

AOT
LAB

Activity Partition

An activity partition is used for logically

separating the actions executed inside an activity

Send
Inwoice

S

Accounting Dept

Inwoice

Customer

Mz ke
Fayrnent

54

AOT .
LAB State Diagram

Opened Closed
. Creates, Clozed [doonilfay-=isEmpty]
Cpend ,T\

Lock! Unlocke!

v

[Locked

55

AOT .
LAB State Diagram

+ A state machine diagram models the behavior of a

single object

+ |t specifies the sequence of states that an object goes
through during its lifetime in response to stimuli from
the environment

56

AOT
LAB

o

State and Transition

A state iIs denoted by a round-cornered rectangle
with the name of the state written inside it

A transition from one state to
the next is denoted by a line source Stst= W riager [Guard] (Effact (ferest e
with arrowhead and may have

a trigger, a guard and an effect

) \

after 2 seconds fpoll input

I

o

If the target state had many
transitions arriving at it, and -
each transition had the same t

Receiving

+ On Entry £ pickup

effect associated with it, it e On Exit? dicoonnact
would be better to associate
the effect with the target state
rather than the transitions

S7

AOT

LAB Enter and Exit Points

The initial state and the final state are

Create Hive bactioy respectively denoted by a filled black
itia =~ |circle and a circle with a dot inside

and may also be labeled with a name

(Initizlizing

Sometimes may be possible ®
to have a different exit point

\

|

Failed to
Fead

/ Frocessing
Rezading Instruc‘tiDnSW ('l.l'l.l'riting Error Report O
Skip Initia
) L

(Ready
\

lizing

N

oy

<]

Processing Di=playing Result=
Im=structions
Final Final

Sometimes may be
possible to have an

alternative start point

58

AOT _ |
LAB Choice and Junction Pseudo-State

[Woice] I'/- Cresting Woice
Mes=age

Creating SMS
[SM3] Meszage

Cresting Fax
Mes=szge

A junction pseudo-state can have
one or more incoming, and one or

more outgoing, transitions; a guard
(Repi=F o can be applied to each transition

Creating Fax
Message

A choice pseudo-state is
represented by a diamond with [SE.EGHHQ veseaon

Forrmat
one transition arriving and two
or more transitions leaving

Receiving Yoice Receiving SMS Receiving Fax
Message Message Message

[F ax]

Reph=5M5
[Repl=wvoice] [Rephe=]

Cresting YWoice Cresting 5MS
Message Message

59

AOT
LAB

!

Check PIN

()
o

ST

[pin
fchedk PIN imvalid]
[pin OK]
[pin OK]
[Search Metwork]
[
neetmo b found

v

pravuer off

powwer off

T

powuer off

]

(
.

”'J

!

Composition

Check FIMN

R

[pin OK]

netwad found

v

Search Hetwaork pover off
poveer off

N

Ready

‘ prouer u:-f'f; ‘

-

60

AOT _ _
LAB History State and Concurrent Regions

A history state Is

used to remember H H
the last state of a

state machine when S?
. . |
it was interrupted o

Applving Brakes
[Front]
4) —
Apping A state may be divided
[rort B2] BN into regions containing
Rea /j%@ sub-states that exist and
(" fpplying | execute concurrently

\ L\ Rear Brakes ’J /

61

AOT
LAB

Sequence Diagram

it Student trin Course
| I I
I] I
: enrollStudent{aStudent) :
T
: isStudentEligible{aStudent] n
| getSeminarHistary()
<
I . .
] I serminarHistory -
| . _____clighiityStatus
: gnrofimentStatus T
T T T T T T T T T T T T T T T T T |
I I
I I
I I
I I
I T I
I I

62

AOT .
LAB Seqguence Diagram

+ Describes how a process is performed by a group of
objects by a sequential set of interactions

+ Facilitates assignment of responsibilities to classes and
helps finding out new methods and new classes

+ These diagrams contain the following elements:

* Roles, which represent roles that objects may play within the
Interaction

= Lifelines, which represent the existence of an object over a
period of time

= Activations, which represent the time during which an object
IS performing an operation

» Messages, which represent communication between objects

63

Lifeline

alf Lifeline Instance :Class

A lifeline represents an

Individual participant in
a sequence diagram

diagram

If lifeline name is "self", it
Indicates that the lifeline
represents the classifier
which owns the sequence

delete :
t g
. ®

The lifeline can be started and ended

64

AOT
LAB

A message is displayed as
arrows and can be complete,
lost or found, synchronous or
asynchronous, call or signal

Source Target
return:= meszagelparametar) ,
messagelparameten :
meszagelreturn] u
COREPPEREE L e e CPPEEREED ,

Lifeline

lost_message .

a

' found_message
[T @

Message

A self message can
represent a recursive call
of an operation, or one
method calling another
method belonging to the
same object

Source

1
, selfmesszage

recursion

65

AOT
LAB

Fragment

procedural logic inside a sequence diagram

A fragments allows the representation of complex

Userinteface O=tzControl OataSource

request_array

request_array_size

sendiamay_sizel H
e e .

loopn o

[array_size] request_itemin

sendiaray_item) H
g - - oo :

zendiarray

RoREEEEEEEEEEEECEEEEEEE —

Alternative fragment
models if...then...else
constructs

Option fragment models
switch constructs

Parallel fragment models
concurrent processing

Loop fragment encloses a
series of messages which
are repeated

66

AOT
LAB

Details

Lo 1) e

rSeminar

1; getName(): seminarName
2: getDescioiptiond)

3. petl.ocation()
4: petSeatsLefi{)
5: petStudentList])
i

Communication Diagram

5.1.1.}: getFullName(} l

1.1: getName{): string

1.2: getNumber(): striiig
2.1: getDescriptiond): string

sSeminar

l* 5.1: getinfo
™~

:Enrollment

enroliment

lsil.l; getlnfo 7

student
:Student

™~

™,

s
s

Actually a serlas of
getter invocations.

67

AOT

LAB Communication Diagram

+ A communication diagram, formerly called a
collaboration diagram, is an interaction diagram that
shows similar information to sequence diagrams but its
primary focus is on object relationships:

* Objects are shown with association connectors between
them

* Messages are added to the associations and show as short
arrows pointing in the direction of the message flow

* The sequence of messages is shown through a numbering
scheme

¢ They provides an alternative view to the sequence
diagram in a format based on structure rather than time

68

AOT _
LAB Robustness Diagram

Lagin Bulta i l!l-lltl ConkitStoie

fas

()

Logon Soraen SAainConlirg [Fer -1 curlwibﬁimcﬁ diodal:DataBase

Rtk Ba Pdodel B etinhSlnee

69

AOT _
LAB Robustness Diagram

+ A robustness diagram is basically a simplified UML
communication diagram

¢ Thelr purpose is to provide a means of refining the use
cases:

= Checking their correctness

= Determining if they address all necessary alternate courses
of action

* Discovering all the objects necessary to the design

70

AOT
LAB

O

Actor, Boundary, Control and Entity

Control elements act as the glue between boundary
and entity elements, implementing the logic required
to manage the various elements and their interactions

X

e

‘hogon Soraan

Boundary (interface)
elements allow the
communicating
between actors and
the internal parts of
the system

‘Lagin Bulten

O

dainl

/....: e
O

OO

riky¥ilg LS anicus dpdaliDatabaze

ol

TR B ‘Bdad el FetinnElnee

Entity elements represent
Information unit of the system

71

AOT
LAB

X O

LognnSmaen
1

O

WainC pritcokler

Wb ibsau H ,
' 1 1
: Etanll ! !
' e ;

i
Inittal a2 1
-
1 1
i i
. i
1 1
Login ' :
o !
BnLoginClidyd '

| [T ugorts altgenaty Servan)
1

E;].q;'_._

LI [Sum:l-lflluu-_]_
~VIPR el

Logon Sequence Diagram

OQ QO

St-:l.luh'l]h_ur-l Madel: Suu-nstnu Modael: Euu-hlE'I:nrt ladel: D-l't.lBl.'H‘.'

1 aEH e S e o,)

Creabe/BwslareFanm

WalcdabeUzagHame, le‘ﬂ

Rzl
IR o

EEiEELEErEEEEEER

Validete

F

72

AOT
LAB

Interaction Overview Diagram

Requestitem

iterm o t found SaarchForbem

Mo
Carcel Sale = ég;l. Finalized?

73

AOT

LAB Interaction Overview Diagram

+ An Interaction overview diagram is a form of activity
diagram in which the nodes represent interaction
diagrams (sequence, communication, interaction
overview and timing diagrams)

+ Most of the notation for interaction overview diagrams
IS the same for activity diagrams

= For example, initial, final, decision, merge, fork and join
nodes are all the same
*+ However, interaction overview diagrams introduce two

new elements: interaction occurrences and interaction
elements

74

AOT
LAB

Occurrence and Element

Actiwity Diagram

Occurrence

Element

ad Actiwity Diagram /

O

75

AOT
LAB

Timing Diagram

i(— rd..d#*z2} —
WaitAccess
I _ Lode 0..13
= WaitCard
Idl=
Stﬁ“-t 1 1 1 1 1 |I:|H {tl"t+3}| 1 1 1 1 1 1 1 1 1 1
=
E HaoCard
=
&
T Ha=Card
d..d*3

i RS
T
a
& Idl= X WaitCard V%itﬂcceXE Idl=
a
1]
=
i i i i i i i i i i i i i i i i i i i i
ime (msz) O 10 20 320 40 S0 60 70 S0 90 100 440 120 1320 440 150 180 470 120 140

76

AOT . .
LAB Timing Diagram

+ A timing diagram is used to display the change in state
or value of one or more elements over time

¢ |t can also show the interaction between timed events
and the time and duration constraints that govern them

77

AOT
LAB

h
The physical model shows.
where and how syslem
omponens will be
deployed. H is a spedhc
map cof The physical layoul

Deployment Diagram

cfihe gsyslem.

1cplip

WWork Station

Webh Erowser

78

AOT _
LAB Deployment Diagram

+ A deployment diagram models the run-time
architecture of a system

= Describes the configuration of hardware in a system in terms
of nodes and connections

» Describes the physical relationships between software and
hardware

» Displays how artifacts are installed and move around a
distributed system

79

AOT

LAB Node and Artefact
— A node Is either a hardware or cartifacts =7
software element. A node instance main.c
can be distinguished from a node by

the fact that its name is underlined

and has a colon before its base node | | AN artifact is a product
wrsiien: || | tyne. An instance may or may not | | OF the software

Computer

have a name before the colon development process.
That may include
A number of standard stereotypes are provided process models (e.g. use
for nodes, namely «cd rom», «computer», «pc», | | case models, design
«pc client», «pc server», etc. models etc), source files,

executables, design

, — documents, test reports,
T Dewvice j Device T prototypes’ user

manuals, etc.

=T
PC Cliernt ==

80

AOT

LAB Association and Composition

In the context of a deployment
diagram, an association
represents a communication
path between nodes

firewsall H

1

wtop-ipae
1

local network Ij
1 1

wethernets wethernets

1 1.7

heybozrd
:Motherbozrd
1 woconnectars 4
mexcecutablelzi*l
app.exe
LCODi=play
1 woconnectars 4

A node can contain other elements,
such as components or artifacts

pri mary H Wor kstati-:-n

sarwer

81

AOT

LAB

Use of UML Diagrams

Activity High
Class High
Communication Low
Component Medium
Composite Structural Low
Deployment Medium
Interaction Overview Low
Object Low
Package Low
Sequence High
State Medium
Timing Low
Use Case Medium

82

AOT
LAB

Mo”n“!f.'ﬁ?;?«w;»l’ Unified Modeling Language

LANGUAGE | W [

Object Constraint Language

AOT .
LAB What i1s OCL?

+ The Object Constraint Language (OCL) is a language
that enables the description of expressions and
constraints on object-oriented

¢+ OCL is a typed formal language with a precise syntax
and semantics

¢+ OCL was developed at IBM by Jos Warmer as a

- e > 'I"'

language for business modelmg within IBM

¢+ OCL is not a programming language

= |t is not possible to write program logic or flow control in OCL

84

AOT _
LAB Why Use OCL in UML Models?

+ UML diagrams are typically not refined enough to
provide all the relevant aspects of a specification

* For instance, there may be the need to describe
additional constraints on the relationships between
model entities and that can be described through:

= Natural language expressions, that always result in
ambiguities

* Formal language expressions, they are usable to persons
with a strong mathematical background

¢+ OCL has been developed to fill this gap:

* |tis a formal language, but remains easy to read and write for
all the business or system modelers

85

AOT .
LAB OCL Constraints

¢ OCL Is based on constraints

= Constraints are restrictions on one or more values of an
object-oriented model or system

¢+ OCL constraints are declarative
* They specify what must be true not what must be done

¢ OCL constraints have no side effects

= Evaluating an OCL expression does not change the state of
the system

¢+ OCL constraints have formal syntax and semantics
= Their interpretation is unambiguous

86

AOT _
LAB Advantages of Constraints

¢ Better documentation

= Constraints add information about the model elements and
their relationships to the visual models used in UML

= |t is way of documenting UML models

+ More precision

= OCL constraints have formal semantics, hence, can be used
to reduce the ambiguity in UML models

¢+ Communication without misunderstanding
= UML models are used to communicate between developers

» Using OCL constraints modelers can communicate
unambiguously

87

AOT
LAB

Where Use OCL?

+ As a query language

To specify invariants on classes and types in the class
model

*

'0S
'0S

'0S

To specify type invariant for stereotypes
To describe pre / post conditions on operations
To describe guards

necify target (sets) for messages and actions
pecify constraints on operations

necify derivation rules for attributes for any

expression over a UML model

88

AOT
LAB

iny; masstatusiiles = 10000

Where Use OCL?

impHes status = Status:Albatros I Baoking
; Lkind : int
!)
Passenger passenger flight | Flight
name : hame % | date ; Date
credit{ ard[(..1] milex :int
milesCard[(.1]
SatUs pre: ma->natEmpty() I

f cumentFlights ; SaquencelFlight)
ereditMIles(b :Bookingp--= " "~
consumemiles{t : Bookingh

e

R ==~ 7 pasklet frn= ma.flightiiles,

cancelbiles(). - e -
0. 13k e

MilesAccount T

numbear

Aightiilas

statusMiles

craditMiles(b : Booking)

sm = maustatusiiles
in fm = fmdpre + boflight. miles and
s = Srrdpre -+ fm@pre * bokincl

pré:ma-»notEmpty() and
Y. maflightMiles == bflight.miles
consumeMiles(b :Booking)

o

post: mafighthiles = ma.fightMiles@prs - Bflight. mibkes

~ | pre; ma->notEmpty(l
cancelMiles))
past: ma flightiiles <= ma.AightMiles@pre

AOT :
LAB Invariant

¢ An Invariant iIs a constraint that iIs connected to a
modeling element: class, and interface or type and has
to hold for all their instances

+ An invariant must be true at all times when the instance
IS at rest

+ An Instance Is not at rest when an operation is under
execution

90

AOT
LAB

Account

points: Integer

earn(i: Integer)
burn(i: Integer)
ISEmpty(): Boolean

Invariant

{ points >= 0 } 1

91

AOT

LAB Precondition

+ A precondition is a constraint that must be true when
an operation is invoked

¢+ |t is the responsibility of the caller to satisfy the
condition

+ This condition is supposed to be true, and anything
|se IS a programming error

1’D

= |f the condition Is not satisfied, no statement can be made
about the integrity of the operation or the system

* |n practice, explicitly checking preconditions by the receiver
may detect many errors

92

AOT
LAB

1 >= 0

<<precondition>> 1

Account

points: Integer

earn(i: Integer)
burn(i: Integer)
ISEmpty(): Boolean

Precondition

{ points >= 0 } 1

<<precondition>>
points >= 1 and 1 >= 0

93

AOT "
LAB Postcondition

+ A postcondition is a constraint that must be true after
the completion of an operation

¢ This condition Is supposed to be true, and anything
else is a programming error

+ |t can be useful to test the postcondition after the

operation, but this is in the nature of debugging a
program

94

AOT
LAB

<<precondition>>
1 >=0

Postcondition

{ points >= 0 } 1

Account
points: Integer
earn(i: Integer) | <<precondition>>
. g po i ntS >: i and i >: O

burn(i: Integer) .

isE[npty(): Booleé'r"i""-u....,,,

. <<postcondition>>
“| points = points@pre - i

<<postcondition>>

points = points@pre + i1

<<postcondition>>
result = (points=0)

95

A?IB Guard

¢ A guard is a constraint that must be true before a
transition can occur

+ A guard is evaluated before the transition so can be
thought of as a pre-condition

¢ A guard is usually used in activity and state diagrams

96

AOT
LAB Guard

[1 > 0]
earn(i: i1nteger)
/Emmy w NMEmmy<\
_ do/initiate
= do/checkitem
L1 0l > AJ Delivery
earn(i: integer) - / burn(i: integer)

A

burn(i: integer) [points - 1 > O]

[points - 1 = O]

earn(i: 1nteger)

97

AOT _ _
LAB OCL Expressions and Constraints

¢+ Each OCL expression has a result
* The value that results by evaluating the expression

¢+ Each OCL expressions can contain only query
operations

= Query operations return a value, but do not change anything

* |s not possible the activation of processes or non-query
operations within OCL

+ The type of an OCL expression is the type of the result
value

+ An OCL constraint is a Boolean OCL expression

98

AOT
LAB OCL Types

+ Basic types
* Real
" |nteger
= String
= Boolean
+ Collection types

= They are the result of navigation through associations in an
UML model

+ User-defined model types
= All classes, types and interfaces in an UML model

99

AOT Operations Defined for Every
LAB OCL Type

+ Two model objects can be compared
" 01=02,01<>02

+ The type of an object can be checked
= oclisTypeOf(type)
« Returns true only for the instances of type
= ocliskKindOf(type)
 Returns true for the instances of type and of its subtypes

+ The type of an object can be retrieved
= oclType

100

AOT

LAB Basic Types

¢ Real

= r1+r2,rl-r2,r1*r2,r1/r2, r.abs, r.floor, r.round,
rl.max(r2), rl.min(r2)

m r1=r2,r11<>12,r1<r2,r1>r2,r1<=r2,rl1>=1r2

* Integer
=il +i2, i1—i2 i1 *i2,il1.div(i2), il.mod(i2), i1 /2, i.abs,
12)

w1

IJ. IIICl)\\IL}, IJ. 111

inl19
Ay
m 1=12,11<>12,11<i2,11>12,11 <=12,11 >= 12

+ Note that Integer is a subclass of Real

= For each parameter of type Real, an Integer can be used as
the actual parameter

101

AOT -
LAB Basic Types

¢ String
" s.Size, s.substring(2, 3), sl.concat(s2), s.tolnteger, s.toReal
" 51 =82,51<>82

= Note that character positions run from 1 to s.size

¢ Boolean

= b1l =b2, bl <>Db2, bl or b2, bl xor b2, bl and b2, not b,
bl implies b2

102

AOT .
LAB Collections

+ Collection is an abstract predefined OCL type

+ Real collections are defined through its subtypes:

= Set: Is the mathematical set, that is, it does not contain
duplicate elements

OrderedSet: is a Set where the elements are ordered
= Bag: is like a set, but may contain duplicates

= Sequence: is like a Bag, but the elements are ordered

103

AOT _ _
LAB Operation on Collections

+ select(b), reject(b)

= This results in a collection that contains all the elements from
collection for which the boolean expression, b, is true / false

» self.employee->select(age > 50)

= self.employee->reject(age > 50)

¢+ collect(e)

= This results in a collection that contains the results of all the
evaluations of the expression, e

= self.employee->collect(person.birthDate)

104

AOT _ _
LAB Operation on Collections

+ forAll(b)

= This results in a Boolean that is true if the Boolean
expression, b, is true for all elements of the collection

» self.employee->forAll(age <= 65)
* exists(b)

= This results in a Boolean that is true if the Boolean |
expression, b, is true for at least one element of the collection

» self.employee->exists(age <= 65)

105

AOT _ _
LAB Operation on Collections

+ Set, Bag, OrderedSet and Sequence
= size(), count(o), sum()

= cl =c2, includes(o), excludes(o), includesAll(c),
excludesAll(c), iIsEmpty(), notEmpty()

+ Set & OrderedSet — Bag & Sequence
= union(c), intersection(c), cl1 —c2
* including(o), excluding(o)
+ OrderedSet and Sequence
= append(o), prepend(o), insertAt(i, o)
= at(i), indexOf(0), first(), last()
» subOrderedSet(il, i2), subSequence(il, i2)

106

AOT _
LAB Model Types and Properties

+ Model types are classes, interfaces and types used /
defined in an UML model

* Properties of a model type are:
= Attributes
= QOperations and methods

= Navigations that are derived from the associations

= Enumerations defined as attribute types

* Properties of a model type can be referenced in OCL
expressions

107

AOT

LAB Enumerations

+ An enumeration defines a number of enumeration
literals, that are the possible values of the enumeration

= Enumerations are types in UML and have a name

= \Within OCL one can refer to the value of an enumeration

¢ |f iIn the UML model there iIs an enumeration named
Gender with values 'female' or 'male’, in OCL they can
be referred as follows:

= Gender::male

= Gender::female

108

