
Agent and Object Technology Lab
Dipartimento di Ingegneria dell’Informazione

AOTAOT
LABLAB Dipartimento di Ingegneria dell Informazione

Università degli Studi di ParmaLABLAB

Software Engineering

Prof Agostino PoggiProf. Agostino Poggi

AOTAOT
LABLAB What is UML?

The Unified Modeling
Language (UML) is the
standard language for
visualizing, specifying,
constructing, and

fdocumenting the artifacts
of a software intensive
system

2

AOTAOT
LABLAB What is UML?

Is a language and notation system used to specify,
construct, visualize and document models of software
systems

Is not a methodology (which considers the specific
framework and conditions of an application domain theframework and conditions of an application domain, the
organizational environment and many other things)

3

AOTAOT
LABLAB Why Use UML?

Provides multiple diagrams for capturing different
architectural views

Is a standard language for visualizing specifyingIs a standard language for visualizing, specifying,
constructing, and documenting software systems

Tool support and interoperability improves in time, as
UML, OCL, and XMI are still relatively young standards

4

y y g

AOTAOT
LABLAB Why Use UML?

Improve Project
Communications 69

Better
Requirements … 51

Faster Development

Easier to maintain

39

40

Fewer Defects

Faster Development

25

39

0 20 40 60 80

5

Source: BZ Research,
August 2004

AOTAOT
LABLAB UML History

6

AOTAOT
LABLAB UML Notation Goals

Simple because it requires only a few concepts and
symbols
Expressive because it is applicable to a wide spectrumExpressive because it is applicable to a wide spectrum
of systems and life cycle methods
Usef l beca se it foc ses onl pon those necessarUseful because it focuses only upon those necessary
elements to software engineering
Consistent because the same concept and symbol
should be applied in the same fashion throughout
Extensible because users and tool builders should
have some freedom to extend the notation

7

have some freedom to extend the notation

AOTAOT
LABLAB UML Specifications

Infrastructure, the foundational language constructs

Superstructure, the user level constructs

Object Constraint Language (OCL), the formal
language used to describe expressions on UML
models

Diagram interchange, the means enabling a smooth g g g
and seamless exchange of documents compliant to the
UML standard

8

AOTAOT
LABLAB UML Architecture

9

Agent and Object Technology Lab
Dipartimento di Ingegneria dell’Informazione

AOTAOT
LABLAB Dipartimento di Ingegneria dell Informazione

Università degli Studi di ParmaLABLAB

Unified Modeling Language

UML Diagrams

AOTAOT
LABLAB UML Diagram Types

Structural View
Cl

Implementation View
C it t t lClass

Object
Composite structural

Composite structural
Component

U C Vi
Composite structural
Package Use Case View

Use Case

Behavioral View Environment View
Sequence
Communication
St t

Deployment

State
Activity
Timing

11

Timing
Interaction overview

AOTAOT
LABLAB Use Case View

The most important architectural view
Describes use cases that provide value for the users
Essential use cases are used as proof of concept forEssential use cases are used as proof of concept for
implementation architecture
Use cases may be visualized in UML use case
diagrams
Each use case may have multiple possible scenarios
Use case scenarios could be described:Use case scenarios could be described:

Using textual descriptions

12

Graphically, using UML activity diagrams

AOTAOT
LABLAB Structural View

Represents structural elements for implementing
solution for defined requirements and defines:

Object-oriented analysis and design elements
Domain and solution vocabulary
System decomposition into layers and subsystemsy p y y
Interfaces of the system and its components

Is represented by static UML diagrams:Is represented by static UML diagrams:
Class diagrams in multiple abstraction levels
Object diagrams
Composite structural diagrams

13

Package diagrams

AOTAOT
LABLAB Behavioral View

Represents dynamic interaction between system
components for implementing requirements
Shows distribution of responsibilities and allows to p
identify interaction and coupling bottlenecks
A means for discussing non-functional requirements:A means for discussing non functional requirements:
performance, maintenance, …
Is represented by dynamic UML diagrams:Is represented by dynamic UML diagrams:

Sequence diagrams State diagrams
Communication
diagrams

Interaction overview
diagrams

14

Activity diagrams Timing diagrams

AOTAOT
LABLAB Implementation View

Describes implementation artifacts of logical
subsystems defined in structural view
May include intermediate artifacts used in systemMay include intermediate artifacts used in system
construction (code files, libraries, data files, …)
Defines dependencies bet een implementationDefines dependencies between implementation
components and their connections by required and
provided interfacesprovided interfaces
Is represented by these UML diagrams:

Component diagrams
Composite structural diagrams

15

Composite structural diagrams

AOTAOT
LABLAB Environment View

Represents system hardware topology

Defines how software components are deployed on
hardware nodes

Useful for analyzing non-functional requirements:
reliability, scalability, security, …

Provides information for system installation and
fi iconfiguration

I t d b th UML d l t di
16

Is represented by the UML deployment diagram

AOTAOT
LABLAB Diagram Frame

The heading is a string contained in a name
tag which is a rectangle with cut off cornerstag which is a rectangle with cut off corners
in the upper left hand corner of the frame

E h di hEach diagram has a
frame, a content
area and a headingarea and a heading

The frame is a rectangle and
is used to denote a border

17

is used to denote a border

AOTAOT
LABLAB Use Case Diagram

18

AOTAOT
LABLAB Use Case Diagram

A use case describes the proposed functionality of a
system

A use case represents a discrete unit of interactionA use case represents a discrete unit of interaction
between a user (human or machine) and the system

This interaction is a single unit of meaningful work, that
may be include a complex interaction between parts

19

y p p

AOTAOT
LABLAB Actor, System Boundary and Use Case

A user of the system
i id tifi d ith th

The system
b d lis identified with the

name of actor
boundary usual
divides what is
inside or outsideinside or outside
the system (use
cases from actors)

A single unit of meaningful work
An actor can be also

d b l A single unit of meaningful work
related to a functionality of the system
is identified with the name of use case

represented by a class
rectangle with the «actor»
keyword

20

keyword

AOTAOT
LABLAB Generalization and Composition

A use case may be used to extend the
An actor can generalize
another actor

behavior of another use case

An extension may

A use case may contain
the functionality of

y
be conditioned

the functionality of
another use case as part of
their normal processing

An extension point indicates where
t di i dd d

21

an extending use case is added

AOTAOT
LABLAB Multiplicity

A use case diagram
can contain severalcan contain several
use cases and actors

The uses connector can optionally

22

have multiplicity values at each end

AOTAOT
LABLAB Class Diagram

23

AOTAOT
LABLAB Class Diagram

A class diagram shows the building blocks of an object-
orientated system
Class diagrams depict a static view of the model, or g p ,
part of the model, describing what attributes and
behavior it has rather than detailing the methods for g
achieving operations
Class diagrams are most useful in illustratingClass diagrams are most useful in illustrating
relationships between classes and interfaces
Generalizations aggregations and associations are allGeneralizations, aggregations, and associations are all
valuable in reflecting inheritance, composition or
usage and connections respectively

24

usage, and connections respectively

AOTAOT
LABLAB Class

A class is represented by a rectangle whichA class is represented by a rectangle which
shows the name of the class and optionally
the name of its operations and attributes.
Compartments are used to divide the class
name, attributes and operations

+ is public visibility
The symbol that precedes the
attribute, or operation name,
i di t th i ibilit f th

+ is public visibility
– is private visibility
is protected visibilityindicates the visibility of the

element
is protected visibility
~ is package visibility

25

AOTAOT
LABLAB Interface and Template

An interface is a specification of behavior that
implementers agree to meet, that is, a contract

A template defines a pattern
whose parameters representwhose parameters represent
types and can be applied to
classes, packages, operationsp g p

26

AOTAOT
LABLAB Association

An association implies two
model elements have amodel elements have a
relationship that usually is
implemented as an instance

An association is represented by a
connector that may include named

variable in one class

connector that may include named
roles at each end, cardinality,
direction and constraints

For more than two elements aFor more than two elements, a
diamond representation toolbox
element can be used as well

27

AOTAOT
LABLAB Generalization and Nesting

A generalization is used to
indicate inheritance.
D f th ifiDrawn from the specific
class to a general class, the
generalize implication isgeneralize implication is
that the source inherits the
target's characteristics

A nesting is connector that g
shows the source element is
nested within the target
l t

28

element

AOTAOT
LABLAB Dependency and Realization

A d d i k f f A realization is a
relationship between
a specification and

A dependency is a weaker form of
relationship showing a relationship
between a client and a supplier a specification and

its implementation
between a client and a supplier

29

AOTAOT
LABLAB Aggregation and Composition

An aggregation is used to depict
elements which are made up ofelements which are made up of
smaller components
Aggregation relationships areAggregation relationships are
shown by a white diamond-shaped
arrowhead pointing towards the

A composition is a stronger form of aggregation that is shown by a black

target or parent class

A composition is a stronger form of aggregation that is shown by a black
diamond-shaped arrowhead and is used where components can be included in a
maximum of one composition at a timep
If the container is deleted, usually all of its parts are deleted with it, but a part
can be individually removed without having to delete the container

30

Compositions are transitive and asymmetric relationships that can be recursive

AOTAOT
LABLAB Association Class

An association class is a construct that allows an association
connection to be defined with a set of operations and attributes

31

AOTAOT
LABLAB Object Diagram

32

AOTAOT
LABLAB Object Diagram

An object diagram describes the static structure of a
system at a particular time and may be considered a
special case of a class diagram

Whereas a class model describes all possibleWhereas a class model describes all possible
situations, an object model describes a particular
situationsituation

Obj t di f l i d t di dObject diagrams are useful in understanding and
validating the corresponding class diagrams

33

AOTAOT
LABLAB Object

By default, object elements do
not have compartments and their
names are underlined and may
show the name of the class fromshow the name of the class from
which the object is instantiated

S i i i iblSometimes it is possible to
represent an object’s run time state,
showing the set values of attributesshowing the set values of attributes
in the particular instance

34

AOTAOT
LABLAB Composite Structure Diagram

35

AOTAOT
LABLAB Composite Structure Diagram

A composite structural diagrams shows the internal
structure of a classifier, including its interaction points
to other parts of the system

A classifier is an UML element that is described byA classifier is an UML element that is described by
attributes and/or methods (i.e., a class, an interface or
a component)a component)

A it t t di i i il t lA composite structure diagram is similar to a class
diagram, but it depicts individual parts instead of whole
l

36

classes

AOTAOT
LABLAB Structured Classifier

A structured classifier represents a class, often an abstract
class or a component whose behavior can be completely orclass, or a component whose behavior can be completely or
partially described through interactions between parts

A part represents a role played at
runtime by one instance of a class
or by a collection of instancesor by a collection of instances

A port is an interaction point
that can be used to connect

An encapsulated classifier
is a type of structured
l ifi th t t i t

structured classifiers with their
parts and with the environment

37

classifier that contains ports

AOTAOT
LABLAB Port

Ports can optionally
if h ispecify the services

they provide and the
services they requireservices they require
from other parts of
the system

Ports can either delegate
Public ports that are visible in the
environment are shown straddling the
b d hil t t d t th t

received requests to internal
parts, or they can deliver these
directly to the behavior of theboundary, while protected ports that

are not visible in the environment are
shown inside the boundary

directly to the behavior of the
structured classifier that the
port is contained within

38

shown inside the boundary

AOTAOT
LABLAB Exposed Interfaces

A provided interface is shown
"b ll i k" h das a "ball on a stick" attached to

the edge of a classifier element

A required interface is shown
as a "cup on a stick" attached to
the edge of a classifier elementthe edge of a classifier element.

A delegate connector is
used for defining the
internal workings of a
component's external
ports and interfaces

39

ports and interfaces

AOTAOT
LABLAB Collaboration

A collaboration defines a set of
cooperating roles used collectively to
illustrate a specific functionality

40

AOTAOT
LABLAB Collaboration

A role binding connector is
drawn from a collaboration to
the classifier that fulfils the role

A represents connector
may be drawn from a

An occurrence connector
may be drawn from amay be drawn from a

collaboration to a classifier
to show that a collaboration

may be drawn from a
collaboration to a classifier
to show that a collaboration

represents the classifier is used in the classifier

41

AOTAOT
LABLAB Component Diagram

42

AOTAOT
LABLAB Component Diagram

Component diagrams illustrate the pieces of software,
embedded controllers, etc., that will make up a system

A component diagram has a higher level of abstraction
than a class diagram

Usually a component is implemented by one or more classes
(bj t) t ti(or objects) at runtimes

C t t di t ib t bl h i l itComponents represent distributable physical units,
including source code, object code, and executable
code

43

code

AOTAOT
LABLAB Component Diagram

44

AOTAOT
LABLAB Package Diagram

45

AOTAOT
LABLAB Package Diagram

Package diagrams are used for

Decomposing a system into logical units of work describing
the dependencies between them

Providing views of a system from multiple levels of
abstraction

The most common use for package diagrams is to p g g
organize use case diagrams and class diagrams, but
may also be used for the other UML elements

46

y

AOTAOT
LABLAB Merge, Nesting and Import

A merge connector defines an implicit generalization between elements in
the source package and elements with the same name in the target packagethe source package, and elements with the same name in the target package
The source element definitions are expanded to include the element
definitions contained in the targetg

An import connectorAn import connector
indicates that the elements
within the target package

A nesting connector
shows that the source g p g

use unqualified names
when being referred to
f th k

package is fully contained
in the target package

47

from the source package

AOTAOT
LABLAB Activity Diagram

48

AOTAOT
LABLAB Activity Diagram

An activity diagram is used to display the sequence of
activities
Activity diagrams show the workflow from a start point y g p
to the finish point detailing the many decision paths
that exist in the progression of events contained in the p g
activity
They may be used to detail situations where parallelThey may be used to detail situations where parallel
processing may occur in the execution of some
activitiesactivities
They are useful for business modeling where they are
used for detailing the processes involved in business

49

used for detailing the processes involved in business

AOTAOT
LABLAB Activity and Action

An activity is shown as a round-cornered
l l i ll h i l fl

Some constraints
can be attached torectangle enclosing all the actions, control flows

and other elements that make up the activity
can be attached to
an action

An action represents a
single step within an activity

50

single step within an activity

AOTAOT
LABLAB Control Flow and Endpoint Nodes

A control flow shows the flow of
control from one action to the nextcontrol from one action to the next

The activity final nodeThe activity final node
denotes the end of all control
flows within the activity

The initial node is
depicted by a large p y g
black spot

The flow final node denotes
the end of a single control flow

51

g

AOTAOT
LABLAB Object and Interrupt Flows

An object flow is a path along which objects or data can pass

Exception handlers can
be modeled on activity
di th h thdiagrams through the use
of an interrupt flow

An interruptible activityAn interruptible activity
region surrounds a group of
actions that can be interrupted

52

AOTAOT
LABLAB Decision-Merge and Fork-Join

The control flows coming
f d i i daway from a decision node

will have guard conditions
which allow control to flowwhich allow control to flow
if the guard condition is met

53

AOTAOT
LABLAB Activity Partition

An activity partition is used for logically
i h i d i id i iseparating the actions executed inside an activity

54

AOTAOT
LABLAB State Diagram

55

AOTAOT
LABLAB State Diagram

A state machine diagram models the behavior of a
single object

It specifies the sequence of states that an object goesIt specifies the sequence of states that an object goes
through during its lifetime in response to stimuli from
the environmentthe environment

56

AOTAOT
LABLAB State and Transition

A state is denoted by a round-cornered rectangle
with the name of the state written inside itwith the name of the state written inside it

A transition from one state to
the next is denoted by a line
with arrowhead and may have

t i d d ff t

If the target state had many

a trigger, a guard and an effect

g y
transitions arriving at it, and
each transition had the same
ff t i t d ith it iteffect associated with it, it

would be better to associate
the effect with the target state

57

the effect with the target state
rather than the transitions

AOTAOT
LABLAB Enter and Exit Points

The initial state and the final state are
respectively denoted by a filled black p y y
circle and a circle with a dot inside
and may also be labeled with a name

Sometimes may be possible
h diff i ito have a different exit point

Sometimes may be
possible to have an
lt ti t t i t

58

alternative start point

AOTAOT
LABLAB Choice and Junction Pseudo-State

A choice pseudo state isA choice pseudo-state is
represented by a diamond with
one transition arriving and two g
or more transitions leaving

A junction pseudo-state can have
one or more incoming, and one or
more outgoing transitions; a guardmore outgoing, transitions; a guard
can be applied to each transition

59

AOTAOT
LABLAB Composition

60

AOTAOT
LABLAB History State and Concurrent Regions

A history state is
used to remember
the last state of a
state machine whenstate machine when
it was interrupted

A state may be divided
into regions containing g g
sub-states that exist and
execute concurrently

61

AOTAOT
LABLAB Sequence Diagram

62

AOTAOT
LABLAB Sequence Diagram

Describes how a process is performed by a group of
bj b i l f i iobjects by a sequential set of interactions

Facilitates assignment of responsibilities to classes and
helps finding out new methods and new classes
These diagrams contain the following elements:g g

Roles, which represent roles that objects may play within the
interaction
Lifelines, which represent the existence of an object over a
period of time
Activations, which represent the time during which an object
is performing an operation

63

Messages, which represent communication between objects

AOTAOT
LABLAB Lifeline

A lifeline represents an
individual participant in

dia sequence diagram

If lifeline name is "self", it
indicates that the lifeline
represents the classifier
which owns the sequence
didiagram

Th lif li b t t d d d d

64

The lifeline can be started and ended

AOTAOT
LABLAB Message

A message is displayed as
d b larrows and can be complete,

lost or found, synchronous or
asynchronous, call or signalasynchronous, call or signal

A self message can
represent a recursive call
of an operation, or one
method calling anothermethod calling another
method belonging to the
same object

65

AOTAOT
LABLAB Fragment

A fragments allows the representation of complex
procedural logic inside a sequence diagramp g q g

Alternative fragment
models if then elsemodels if…then…else
constructs
Option fragment modelsOption fragment models
switch constructs
Parallel fragment models g
concurrent processing
Loop fragment encloses a
series of messages which
are repeated

66

…

AOTAOT
LABLAB Communication Diagram

67

AOTAOT
LABLAB Communication Diagram

A communication diagram, formerly called a
collaboration diagram, is an interaction diagram that
shows similar information to sequence diagrams but its
primary focus is on object relationships:

Objects are shown with association connectors between
them
Messages are added to the associations and show as short

i ti i th di ti f th flarrows pointing in the direction of the message flow
The sequence of messages is shown through a numbering
schemescheme

They provides an alternative view to the sequence
di i f t b d t t th th ti

68

diagram in a format based on structure rather than time

AOTAOT
LABLAB Robustness Diagram

69

AOTAOT
LABLAB Robustness Diagram

A robustness diagram is basically a simplified UML
communication diagram

Their purpose is to provide a means of refining the use
cases:

Checking their correctness

Determining if they address all necessary alternate courses
f tiof action

Discovering all the objects necessary to the design

70

Discovering all the objects necessary to the design

AOTAOT
LABLAB Actor, Boundary, Control and Entity

Control elements act as the glue between boundary
and entity elements, implementing the logic required y , p g g q
to manage the various elements and their interactions

Boundary (interface)
elements allow the
communicatingcommunicating
between actors and
the internal parts of

Entity elements represent
information unit of the system

71

p
the system

information unit of the system

AOTAOT
LABLAB Logon Sequence Diagram

72

AOTAOT
LABLAB Interaction Overview Diagram

73

AOTAOT
LABLAB Interaction Overview Diagram

An interaction overview diagram is a form of activity
diagram in which the nodes represent interaction
diagrams (sequence, communication, interaction
overview and timing diagrams)
Most of the notation for interaction overview diagrams g
is the same for activity diagrams

For example, initial, final, decision, merge, fork and join p , , , , g , j
nodes are all the same

However, interaction overview diagrams introduce two , g
new elements: interaction occurrences and interaction
elements

74

AOTAOT
LABLAB Occurrence and Element

Occurrence

Element

75

AOTAOT
LABLAB Timing Diagram

76

AOTAOT
LABLAB Timing Diagram

A timing diagram is used to display the change in state
or value of one or more elements over time

It can also show the interaction between timed events
d th ti d d ti t i t th t thand the time and duration constraints that govern them

77

AOTAOT
LABLAB Deployment Diagram

78

AOTAOT
LABLAB Deployment Diagram

A deployment diagram models the run-time
architecture of a system

Describes the configuration of hardware in a system in terms
of nodes and connections

Describes the physical relationships between software and
hardware

Displays how artifacts are installed and move around a
distributed system

79

AOTAOT
LABLAB Node and Artefact

A node is either a hardware or
software element A node instancesoftware element. A node instance
can be distinguished from a node by
the fact that its name is underlined

An artifact is a productand has a colon before its base node
type. An instance may or may not
have a name before the colon

An artifact is a product
of the software
development process.have a name before the colon

A number of standard stereotypes are provided

p p
That may include
process models (e.g. use

for nodes, namely «cd rom», «computer», «pc»,
«pc client», «pc server», etc.

case models, design
models etc), source files,
executables designexecutables, design
documents, test reports,
prototypes, user

80

manuals, etc.

AOTAOT
LABLAB Association and Composition

In the context of a deployment
diagram an associationdiagram, an association
represents a communication
path between nodes

A d i h l

p

A node can contain other elements,
such as components or artifacts

81

AOTAOT
LABLAB Use of UML Diagrams

Activity High
Class HighClass High
Communication Low
Component MediumComponent Medium
Composite Structural Low
Deployment MediumDeployment Medium
Interaction Overview Low
Object Lowj
Package Low
Sequence Highq
State Medium
Timing Low

82

Use Case Medium

AOTAOT
LABLABLABLAB

Unified Modeling Language

O CObject Constraint Language

AOTAOT
LABLAB What is OCL?

The Object Constraint Language (OCL) is a language
th t bl th d i ti f i dthat enables the description of expressions and
constraints on object-oriented

OCL is a typed formal language with a precise syntax
and semanticsand semantics

OCL was developed at IBM by Jos Warmer as aOCL was developed at IBM by Jos Warmer as a
language for business modeling within IBM

OCL is not a programming language
It is not possible to write program logic or flow control in OCL

84

It is not possible to write program logic or flow control in OCL

AOTAOT
LABLAB Why Use OCL in UML Models?

UML diagrams are typically not refined enough to
id ll h l f ifi iprovide all the relevant aspects of a specification

For instance, there may be the need to describe
additional constraints on the relationships between
model entities and that can be described through:

Natural language expressions, that always result in
ambiguities
Formal language expressions, they are usable to persons
with a strong mathematical background

OCL has been developed to fill this gap:
It is a formal language, but remains easy to read and write for

85

all the business or system modelers

AOTAOT
LABLAB OCL Constraints

OCL is based on constraints
Constraints are restrictions on one or more values of an
object-oriented model or system

OCL constraints are declarative
They specify what must be true not what must be doneThey specify what must be true not what must be done

OCL constraints have no side effects
Evaluating an OCL expression does not change the state of
the system

OCL constraints have formal syntax and semantics
Their interpretation is unambiguous

86

Their interpretation is unambiguous

AOTAOT
LABLAB Advantages of Constraints

Better documentation
Constraints add information about the model elements and
their relationships to the visual models used in UML
It i f d ti UML d lIt is way of documenting UML models

More precisionp
OCL constraints have formal semantics, hence, can be used
to reduce the ambiguity in UML models

Communication without misunderstanding
UML models are sed to comm nicate bet een de elopersUML models are used to communicate between developers
Using OCL constraints modelers can communicate
unambiguously

87

unambiguously

AOTAOT
LABLAB Where Use OCL?

As a query language
To specify invariants on classes and types in the class
model
To specify type invariant for stereotypes
To describe pre / post conditions on operationsTo describe pre / post conditions on operations
To describe guards
To specify target (sets) for messages and actions
To specify constraints on operationsp y p
To specify derivation rules for attributes for any
expression over a UML model

88

expression over a UML model

AOTAOT
LABLAB Where Use OCL?

89

AOTAOT
LABLAB Invariant

An invariant is a constraint that is connected to a
d li l t l d i t f t d hmodeling element: class, and interface or type and has

to hold for all their instances

An invariant must be true at all times when the instance
is at rest

An instance is not at rest when an operation is under
execution

90

AOTAOT
LABLAB Invariant

Account
{ points >= 0 }

points: Integer

earn(i: Integer)
burn(i: Integer)
isEmpty(): Boolean

91

AOTAOT
LABLAB Precondition

A precondition is a constraint that must be true when
ti i i k dan operation is invoked

It is the responsibility of the caller to satisfy theIt is the responsibility of the caller to satisfy the
condition

This condition is supposed to be true, and anything
else is a programming errorelse is a programming error

If the condition is not satisfied, no statement can be made
about the integrity of the operation or the systemabout the integrity of the operation or the system

In practice, explicitly checking preconditions by the receiver
may detect many errors

92

may detect many errors

AOTAOT
LABLAB Precondition

Account
{ points >= 0 }

<<precondition>>

points: Integer

earn(i: Integer)

i >= 0

<<precondition>>
points >= i and i >= 0

burn(i: Integer)
isEmpty(): Boolean

93

AOTAOT
LABLAB Postcondition

A postcondition is a constraint that must be true after
th l ti f tithe completion of an operation

This condition is supposed to be true, and anything
else is a programming error

It can be useful to test the postcondition after the p
operation, but this is in the nature of debugging a
program

94

AOTAOT
LABLAB Postcondition

Account
{ points >= 0 }

<<precondition>>

points: Integer

earn(i: Integer)

i >= 0

<<precondition>>
points >= i and i >= 0

burn(i: Integer)
isEmpty(): Boolean

<<postcondition>>
points = points@pre - ipoints = points@pre i

<<postcondition>>
points = points@pre + i

<< t diti >><<postcondition>>
result = (points=0)

95

AOTAOT
LABLAB Guard

A guard is a constraint that must be true before a
transition can occur

A guard is evaluated before the transition so can beA guard is evaluated before the transition so can be
thought of as a pre-condition

A guard is usually used in activity and state diagrams

96

AOTAOT
LABLAB Guard

[i > 0]

Empty NotEmpty

earn(i: integer)

do/checkItem[i = 0] do/initiate
Delivery

[points - i > 0]burn(i: integer)

earn(i: integer) burn(i: integer)

[p]

[points - i = 0]

earn(i: integer)

burn(i: integer)

earn(i: integer)

97

AOTAOT
LABLAB OCL Expressions and Constraints

Each OCL expression has a result
The value that results by evaluating the expression

Each OCL expressions can contain only queryEach OCL expressions can contain only query
operations

Q ti t l b t d t h thiQuery operations return a value, but do not change anything
Is not possible the activation of processes or non-query

ti ithi OCLoperations within OCL

The type of an OCL expression is the type of the result yp p yp
value

A OCL t i t i B l OCL i
98

An OCL constraint is a Boolean OCL expression

AOTAOT
LABLAB OCL Types

Basic types
Real
Integerg
String
BooleanBoolean

Collection types
They are the result of navigation through associations in an
UML model

User-defined model types
All classes types and interfaces in an UML model

99

All classes, types and interfaces in an UML model

AOTAOT
LABLAB

Operations Defined for Every
OCL TypeOCL Type

Two model objects can be compared
o1 = o2, o1 <> o2

The type of an object can be checkedThe type of an object can be checked
oclIsTypeOf(type)

• Returns true only for the instances of type
oclIsKindOf(type)

• Returns true for the instances of type and of its subtypes

Th t f bj t b t i dThe type of an object can be retrieved
oclType

100

AOTAOT
LABLAB Basic Types

Real
r1 + r2, r1 − r2, r1 * r2, r1 / r2, r.abs, r.floor, r.round,
r1.max(r2), r1.min(r2)

r1 = r2, r1 <> r2 , r1 < r2, r1 > r2, r1 <= r2, r1 >= r2

IntegerInteger
i1 + i2, i1 − i2, i1 * i2, i1.div(i2), i1.mod(i2), i1 / i2, i.abs,
i1 max(i2) i1 min(i2)i1.max(i2), i1.min(i2)

i1 = i2, i1 <> i2 , i1 < i2, i1 > i2, i1 <= i2, i1 >= i2

Note that Integer is a subclass of Real
For each parameter of type Real, an Integer can be used as

101

p yp , g
the actual parameter

AOTAOT
LABLAB Basic Types

String

s.size, s.substring(2, 3), s1.concat(s2), s.toInteger, s.toReal

s1 = s2, s1 <> s2

Note that character positions run from 1 to s.size

Boolean

b1 = b2, b1 <> b2, b1 or b2, b1 xor b2, b1 and b2, not b,
b1 implies b2

102

b1 implies b2

AOTAOT
LABLAB Collections

Collection is an abstract predefined OCL type

Real collections are defined through its subtypes:g yp

Set: is the mathematical set, that is, it does not contain
d li t l tduplicate elements

OrderedSet: is a Set where the elements are orderedOrderedSet: is a Set where the elements are ordered

Bag: is like a set, but may contain duplicatesg , y p

Sequence: is like a Bag, but the elements are ordered

103

AOTAOT
LABLAB Operation on Collections

select(b), reject(b)

This results in a collection that contains all the elements from
collection for which the boolean expression, b, is true / false

self.employee->select(age > 50)

self.employee->reject(age > 50)

collect(e)

This results in a collection that contains the results of all theThis results in a collection that contains the results of all the
evaluations of the expression, e

self employee >collect(person birthDate)

104

self.employee->collect(person.birthDate)

AOTAOT
LABLAB Operation on Collections

forAll(b)()

This results in a Boolean that is true if the Boolean
expression b is true for all elements of the collectionexpression, b, is true for all elements of the collection

self.employee->forAll(age <= 65)self.employee forAll(age 65)

exists(b)()

This results in a Boolean that is true if the Boolean
expression b is true for at least one element of the collectionexpression, b, is true for at least one element of the collection

self.employee->exists(age <= 65)

105

self.employee exists(age 65)

AOTAOT
LABLAB Operation on Collections

Set, Bag, OrderedSet and Sequence
size(), count(o), sum()
c1 = c2, includes(o), excludes(o), includesAll(c),
excludesAll(c), isEmpty(), notEmpty()

Set & OrderedSet – Bag & Sequence
union(c), intersection(c), c1 – c2
including(o), excluding(o)g() g()

OrderedSet and Sequence
append(o) prepend(o) insertAt(i o)append(o), prepend(o), insertAt(i, o)
at(i), indexOf(o), first(), last()
subOrderedSet(i1 i2) subSequence(i1 i2)

106

subOrderedSet(i1, i2), subSequence(i1, i2)

AOTAOT
LABLAB Model Types and Properties

Model types are classes, interfaces and types used /
d fi d i UML d ldefined in an UML model

Properties of a model type are:Properties of a model type are:
Attributes

Operations and methods

Navigations that are derived from the associationsNavigations that are derived from the associations

Enumerations defined as attribute types

Properties of a model type can be referenced in OCL
expressions

107

expressions

AOTAOT
LABLAB Enumerations

An enumeration defines a number of enumeration
literals, that are the possible values of the enumeration

Enumerations are types in UML and have a nameEnumerations are types in UML and have a name

Within OCL one can refer to the value of an enumeration

If in the UML model there is an enumeration named
G d ith l 'f l ' ' l ‘ i OCL thGender with values 'female' or 'male‘, in OCL they can
be referred as follows:

Gender::male

108

Gender::female

