AOT Agent and Object Technology Lab

- Dipartimento di ingegneria deil'informazione
LAB Universita degli Studi di Parma

Software Engineering

Implementation and Maintenance

Prof. Agostino Poggqi

AOT .
LAB Implementation

+ Implementation involves taking all of the detailed
design documents from the design phase and
transforming them into the actual system

+ Primary Implementation activities include:
= Coding and debugging
= Testing
= Documentation completion

= |nstallation

AfATB Coding Style

¢ Good coding style Is important because programs are:
= Written once

= Read many times

¢ Each software company enforces its own coding
standards (house style)

¢ “‘l"pO" tant aspec*o f cod r‘g ‘tyi :
= | ayout
= Naming

= Commenting

AfATB Documentation i1s Code

¢ Comments are as important as the code itself
= Determine successful use of code

= Determine whether code can be maintained
« Creation/maintenance = 1/10

* Documentation belongs in code or as close as possible
= Code evolves, documentation drifts away

Put specifications in comments next to code when possible

Write a short description for each method

Link the code to the external documentation

+ Avoid useless comments

AOT

LAB Implementation Diagrams

¢+ Component Diagrams

» Used to document dependencies between components,
typically files, either compilation dependencies or run-time
dependencies

¢ Deployment Diagrams

= Used to show the configuration of run-time processing
elements and the software components and processes that
are located on them

AfATB Implementation Tools

¢+ CASE tools

+ Compilers, interpreters and run-times
+ Visual editors

* IDEs

+ Version control systems

¢ Database managemen Nt Systems
¢ Testing tools
+ |nstallation tools

¢ Conversion tools

AOT .
LAB Testing

¢ Testing involves bringing all the project pieces together
Into a special testing environment to test for errors,
bugs, and interoperability, in order to verify that the
system meets all the business requirements defined in
the analysis phase

+ Primary testing activities include:
= Write the test conditions
= Perform the system testing

= Provide feedback to improve software

AfATB Dealing with Errors

+ Error prevention (before the system is released):
= Use good programming methodology to reduce complexity
= Use version control to prevent inconsistent systems
= Apply verification to prevent algorithmic bugs

+ Error detection (while system is running):
= Testing: create failures in a planned way
= Debugging: start with an unplanned failures
= Monitoring: deliver information about system state

* Error recovery (after the system is released):
= Data base systems (atomic transactions)
= Modular redundancy
= Recovery blocks

AfATB Definitions

* Error

= Any discrepancy between an actual, measured value and a
theoretical, predicted value

¢ [Fault

= A condition that causes the software to malfunction or fall
(cause)

¢ Failure
= The inability of a piece of software to perform according to its
specifications (effect)
- Failures are caused by faults, but not all faults cause failures

« A piece of software has failed if its actual behavior differs in
any way from its expected behavior

AfATB Test Plan

+ A test plan specifies how to demonstrate that the
software is free of faults and behaves according to the
requirements specification

+ A test plan breaks the testing process into specific
tests, addressing specific data items and values

10

AfATB Test Specification

¢ Each test has a test specification that documents the
purpose of the test

+ If atestis to be accomplished by a series of smaller
tests, the test specification describes the relationship
between the smaller and the larger tests

+ The test specification must describe the conditions that
iIndicate when the test is complete and a means for
evaluating the results

11

AfATB Test Oracle

+ A test oracle is the set of predicted results for a set of
tests, and is used to determine the success of testing

¢ Test oracles are extremely difficult to create and are
ideally created from the requirements specification

12

AfATB Test Cases

+ A test case Is a set of inputs to the system

+ Successfully testing a system hinges on selecting
representative test cases

* Poorly chosen test cases may fall to illuminate the
faults in a system

+ In most systems exhaustive testing is impossible, so a
white (glass) box or black box testing strategy is
typically selected

13

AOT

¢

L 4

LAB Testing Techniques

Glass box testing
= Allowed to examine code
= Attempt to improve thoroughness of tests

= Based on the knowledge of the code

Black box testing
= Treat program as “black box”
= Test behavior in response to inputs

= Based on the knowledge of the expected result

14

AfATB Glass Box Testing Limits

* Logic of a piece of code defines a set of possible
execution paths, flow-paths through the function

= Think of a flow-chart
= The inputs control which path is taken

+ A good set of test data might make sure every possible
path is followed

=
P R ez o= ==

= This tests every possible behavior

¢ The problem is that for even small programs with loops
and conditionals, the total number of paths becomes

too large too quickly

15

AfATB Common Errors

¢+ Boundary values, boundary conditions

= Extremes are incorrectly identified
- E.g., the last item or first item in a collection
- E.g., the start or end of a range of values

+ Off-by-one errors

= Related to boundary conditions
- E.g., using the nth value instead of n-1
- E.g., using O instead of 1

¢ Incorrect inputs

= Rely on pre-conditions defined for your functions
- Throws a related exception if programmed
- Causes an unexpected behavior otherwise

16

AOT

¢

L 4

¢

LAB
Alpha test

= Test components during development
= Usually glass box test

= Divided in unit and integration test

Beta test
= TestIn real user environment

= Always black box test

Acceptance

Testing Stages

17

AfATB Unit Testing

¢ The units comprising a system are individually tested

+ The code is examined for faults in algorithms, data and
syntax

+ A set of test cases is formulated and input and the
results are evaluated

¢+ The module being tested should be reviewed in
context of the requirements specification

18

AfATB Unit Testing

+ Not possible to test all flow paths
= Many paths by combining conditionals, switches, etc.
= |nfinite number of paths for loops

= New paths caused by exceptions

¢ Test coverage
= Alternative to flow path
= Ensure each line of code tested

= Does not capture all possible combinations

19

Af;g Integration Testing

¢+ The goal is to ensure that groups of components work
together as specified in the requirements document

+ Four kinds of integration tests exist
= Structure tests
= Functional tests
= Stress tests

= Performance tests

20

AOT _ _ _
LAB Integration Testing Strategies

¢

¢

¢

¢

Big bang integration
Bottom up integration
Top down integration
Sandwich testing

Variations of the above

21

AfATB Bottom Up Testing

+ The subsystem in the lowest layer of the call hierarchy
are tested individually

+ Then the next subsystems are tested that call the
previously tested subsystems

¢ This Is done repeatedly until all subsystems are
iIncluded In the testing

¢ Tests are usually performed through a test driver

= |t calls a subsystem and passes a test case to it

22

AfATB Top Down Testing

+ Test the top layer or the controlling subsystem first

+ Then combine all the subsystems that are called by the
tested subsystems and test the resulting collection of
subsystems

* Do this until all subsystems are incorporated into the
test

¢ Tests are usually performed through a test stub

* [t simulates the activity of a missing subsystem by answering
to the calling sequence of the calling subsystem and
returning back fake data

23

AOT

LAB Bottom Up Vs. Top Down
+ Bad for functionally + Test cases can be defined
decomposed systems In terms of the functionality
because It tests the most of the system
Important subsystem (Ul)

+ Writing stubs can be

last difficult because they must
allow all possible
conditions to be tested
+ Useful for integrating + Possibly a very large
object-oriented systems, number of stubs may be
real-time systems and required, especially if the
systems with strict lowest level of the system

performance requirements contains many methods

24

AfATB Acceptance Test

+ Test entire software placing it in user environment

+ Test software with
» Real-world data
» Real users
= Typical operating conditions
» Test cases selected by users

+ Ensure software meets specifications

25

AfATB Test Suite

+ Obviously you have to test your code to get it working
In the first place

= You can do ad hoc testing (running whatever tests occur to
you at the moment), or

= You can build a test suite (a thorough set of tests that can
be run at any time)

26

AfATB Test Suite

+ Advantages of a test suite
= Reduces total number of bugs in delivered code

= Makes code much more maintainable and refactorable
« This is a huge win for programs that get actual use!

¢ Disadvantages of a test suite
* |t's a lot of extra programming

 This is true, but the use of a good test framework can help
quite a bit
= You don’t have time to do all that extra work

- But experiments repeatedly show that test suites reduce
debugging time more than the amount spent building the test
suite

27

AOT

LAB

Test Results

Test
Condition Date Pass/
Number Tested Tester Test Condition Expected Result Actual Result Fail
1 1/1/05 Emily Click on System Main Menu appears Same as Pass
Hickman Start Button expected result
2 1/1/05 Emily Click on Logon Logon Screen appears Same as Pass
Hickman Button in Main asking for Username expected result
Menu and Passwvord
3 1/1/05 Emily Type Emily Emily Hickman appears | Same as Pass
Hickman Hickman in the in the User Name Field expected result
User Name Field
4 1/1/05 Emily Type Zahara 123 KAKXKAXKXAKAAKXX appears Same as Pass
Hickman in the passwvword in the passvvord field expected result
field
5 1/1/05 Emily Click on O.K. User logon request is Same as Pass
Hickman button sent to database and expected result
user name and
passwvvord are verified
6 1/1/05 Emily Click on Start User name and Screen Fail

Hickman

passwvvord are
accepted and the
system main
menu appears

appeared stating
logon failed and
username and
passwvvord were
incorrect

28

AfATB Object-Oriented Testing

+ The components to be tested are object classes that
are instantiated as objects

¢ Larger grain than individual functions so approaches to
white-box testing have to be extended

+ No obvious ‘top’ to the system for top-down integration
and testing

29

AfATB Testing Levels

+ Testing operations associated with objects

¢ Testing object classes

¢ Testing clusters of cooperating objects

¢ Testing the complete system

30

AfATB Object Class Testing

+ Complete test coverage of a class involves
+ Testing all operations associated with an object

¢ Setting and interrogating all object attributes

D
O
*
5
]
13
z
'D
(0

e/ A\l JiIJI1 l

+ Inheritance makes it more difficult to design object
class tests as the information to be tested is not
localized

31

AfATB Object Integration

+ [evels of integration are less distinct in object-oriented
systems

¢ Cluster testing is concerned with integrating and
testing clusters of cooperating objects

+ |dentify clusters using knowledge of the operation of
objects and the system features that are implemented
by these clusters

32

AOT

LAB Cluster Testing Approaches

¢ Use-case or scenario testing
= Testing is based on a user interactions with the system

= Has the advantage that it tests system features as
experienced by users

+ Thread testing

» Tests the systems response to events as processing threads
through the system

+ QObject interaction testing

= Tests sequences of object interactions that stop when an
object operation does not call on services from another
object

33

AOT Inheritance, Polymorphism and
LAB Dynamic Binding

+ |Inheritance

= Methods inherited from a superclass must be retested in the
context of the subclasses

»= Testing using the context of the superclass may not include
all the cases that may occur in context of the subclasses

¢ Polymorphism
= Parameters have more than one set of values and an
operation may be implemented by more than one method

¢ Dynamic binding
= Methods that implement an operation are unknown until run
time

34

AOT Extreme Programming Approach
LAB to Testing

+ Tests are written before the code itself

+ |f code has no automated test case, it Is assumed not
to work

+ A test framework is used so that automated testing
can be done after every small change to the code

= This may be as often as every 5 or 10 minutes

¢ If a bug Is found after development, a test is created
to keep the bug from coming back

35

AOT

LAB Extreme Programming Development

+ First, you create one test to define some small aspect
of the problem at hand

+ Then you create the simplest code that will make that
test pass

* Then you create a second test

¢ Then you add some new code to make this new test
pass

= But no more until you have yet a third test

+ You continue until there is nothing left to test

36

AOT

LAB Extreme Programming Advantages

*+ Fewer bugs
+ More maintainable code
¢ Continuous Iintegration

+ During development, the program always works

= |t may not do everything required, but what it does, it does
right

37

AfATB Junit

¢ JUnit is a framework for writing tests

+ JUnit was written by Erich Gamma (of design patterns
fame) and Kent Beck (creator of XP methodology)

+ JUnit uses Java’s reflection capabillities (Java
programs can examine their own code)

38

AfATB Junit

¢ JUnit helps the programmer:
= Define and execute tests and test suites
* Formalize requirements and clarify architecture

= Write and debug code
* |ntegrate code and always be ready to release a working

version

¢ JUnit is not yet included in Sun’s SDK, but an
Increasing number of IDEs include it

= E.g., Eclipse

39

AOT

LAB Calculator Class Example

package system.calc;

public class Calculator {
private static int result; // Static variable where the result is stored

——

public void switchOn() { // Swith on the screen, display "hello”, beep
result = 0; // and do other things that calculator do nowadays

}
public void switchOff() { } // Display "bye bye", beep, switch off the screen

public int getResult() {
return result;

}

public void add(int n) {
result = result + n;

}

public void substract(int n) {
result = result - 1;

}
public void multiply(int n) {} /Not implemented yet

public void divide(int n) {
result = result / n;

}

public void square(int n) {
result=n*n;

}

public void squareRoot(int n) {

for (; ;) ; //Bug : loops indefinitely

}

public void clear() { // Cleans the result
result = 0;

}

40

AOT
LAB

Calculator Class Example

package system.junit.calc;

import calc.Calculator;
import org.junit.Before;
import org.junit.Ignore;
import org.junit.Test;
import static org.junit.Assert.*;
public class CalculatorTest {
private static Calculator calculator = new Calculator();

}\

@Test(expected = ArithmeticException.class)
public void divideByZero() {
calculator.divide(0);

}

@Ignore("not ready yet")

@Test

public void multiply() {

calculator.add(10);
calculator.multiply(10);
assertEquals(calculator.getResult(), 100);

}

@Before
public void clearCalculator() {
calculator.clear();

}

@Test

public void add() {
calculator.add(1);
calculator.add(1);

assertEquals(calculator.getResult(), 2);

}

@Test

public void subtract() {
calculator.add(10);
calculator.subtract(2);

assertEquals(calculator.getResult(), 8);

}

@Test

public void divide() {
calculator.add(8);
calculator.divide(2);

assert calculator.getResult() == 5;

}

41

AOT

LAB Calculator Class Example

There were 2 failures:

1) subtract(system.test.calc.CalculatorTest)

java.lang.AssertionError: expected:<9> but was:<8>
at org.junit.Assert.fail(Assert.java:69)

2) divide(system.test.calc.CalculatorTest)

java.lang.AssertionError

FAILURESI!!

Tests run: 4, Failures: 2

java —ea org.junit.runner.JUnitCore system.test.calc.CalculatorTest

public void substract(int n) {
result = result - 1;

}

at system.test.calc.CalculatorTest.divide(CalculatorTest.java:40)

@Test

public void divide() {
calculator.add(8);
calculator.divide(2);

assert calculator.getResult() == 5;

}

42

AfATB Calculator Class Example

+ |s JUnit testing overkill for this little class?
¢ XP view is: If it Isn’t tested, assume it doesn’t work

+ You are not likely to have many classes this trivial in a
real program, so writing JUnit tests for those few trivial
classes is no big deal

¢ Often even XP programmers don’t bother writing tests
for simple getter methods such as getResult()

43

AfATB Test Declaration

¢ @Test

= Annotates the test methods

* May have parameters declaring:

- The type of exception that should be thrown
= E.g., @Test(expected = ArithmeticException.class)

= Test fails either if no exception is thrown or if a different exception is
thrown

A time-out period in milliseconds
= E.g., @Test(time-out=10)
= Test falls if it takes more time than the one defined by the time-out

* @Ilgnore

* |[nforms the test runner to ignore the test, but reporting that it
was not run
44

AfATB Set up and Tear down

¢ @Before and @After

= Methods annotated with @Before execute before every test
* Methods annotated with @After execute after every test
= There may be any number of @Before and @After methods

* |tis possible to inherit the @Before and @After methods
- @Before: execution is down the inheritance chain (superclass first)
- @After : execution is up the inheritance chain (subclass first)

¢ @BeforeClass and @AfterClass

= Only a @BeforeClass method and a @AfterClass method are
allowed

= Provide one-time set up and tear down, that is they are
respectively executes once before and after all the tests

45

AfATB Assert Methods

¢ Use It to document a condition that you “know” to be
true

+ Use assert false in code that you “know” cannot be
reached (such as a default case in a switch statement)

+ Do not use assert to check whether parameters have
legal values, or other places where throwing an
Exception is more appropriate

46

AfATB Assert Methods

¢ asserteEquals
= Asserts that either two objects or two primitive values are equal

¢ assertTrue, assertFalse
= Assert that two Boolean values are either equal or are different

+ assertNull, assertNotNull
= Assert that an object either is null or is not null

¢ assertSame, assertNotSame

= Assert that two objects either refer to the same object or do not refer to
the same object

+ fall, fallNotEquals, failSame, failNotSame
= Cause the unconditional / conditional failure of a test

47

AfATB Problems with Unit Testing

+ JUnit is designed to call methods and compare the
results they return against expected results

* This works great for methods that just return results,
but many methods have side effects

* To test methods that do output, you have to capture the
output

« It's possible to capture output, but it’'s an unpleasant coding
chore

= To test methods that change the state of the object, you
have to write the code that checks the state

48

AfATB Problems with Unit Testing

+ Heavy use of JUnit encourages a “functional” style,
where most methods are called to compute a value,
rather than to have side effects

= This can actually be a good thing

= Methods that just return results, without side effects (such as
printing), are simpler, more general, and easier to reuse

49

AfATB Test Double

¢+ Sometimes it is just plain hard to test the system under
test (SUT) because it depends on other components
that cannot be used in the test environment

¢+ In these cases each of such components can be
replaced with a test double

= A test double is any object or component used in place of the

real component to execute the test
= A test double doesn't have to behave exactly like the real
component

= A test double merely has to provide the same API as the real
one so that the SUT thinks it is the real one!

50

AfATB Test Double Types

¢ Dummy object
* |s a placeholder object that is passed to the code under test as a
parameter but never used
¢ Test stub
* |s an object that is used by a test to replace a real component to
force the system down the path we want for the test
+ Mock object
= |s an object that is used by a test to replace a real component and
that returns hard coded values or values preloaded
+ Fake object

= |s an object that replace the functionality of the of the real object
with an alternate implementation
 |.e., returning a canned list of values instead of hitting a database
51

Af;B Test Stub and Mock Object

public class WarehouseStub implements _ _
Warehouse public class WarehouseMock implements Warehouse

{ b
public void add(String product, inti) {} int inventoryResult;
boolean hasinventoryResult;

ublic int getinventory(String product
b ? v Ip) int expectedCalls,actualCalls;

return O;

}

public boolean hasinventory(String product) {
return false;

}

public void remove(String product, inti) {}

public int getinventory(String product) {
actualCalls++;
return inventoryResult;

}

public void setGetinventoryResult(int result) {
this.inventoryResult = result;
expectedCalls++;

public boolean verify(){
return expectedCalls == actualCalls;

52

AfATB Documentation

¢ User documentation

= Written or visual information about an application system,
how it works, and how to use it

* Help users understand how to use software

¢ System documentation

= Detailed information about a system’s design specs, its
iInternal workings, and its functionality

= Help coders understand how to modify, maintain software

53

AfATB Documentation

¢ Training manuals organized around the tasks the users
carry out

+ On-line computer-based training that can be delivered
when the users need it

+ Reference manuals to provide complete description of
the system in terms the users can understand

+ On-line help replicating the manuals

54

T
AfAB What Makes Good Documentation?

+ Use of overview, index, getting started instructions
sections, I.e., all that make structured the
documentation

+ Based on the description of functionalities

+ Oriented to help in the execution of the tasks of the
systems and to recognize the state of the system

= "Howto ...”
= Frequently Asked Questions
= Messages & their meanings

55

AOT

¢

LAB User Training

Set clear learning objectives for trainees

‘raining should be practical and geared to the tasks
the users will carry out

‘raining should be delivered ‘just in time’ not weeks
before the users need it

Computer-based training can deliver ‘just in time’
training
Follow up after the introduction of the system to make

sure users haven’t got into bad habits through lack of
training or having forgotten what they had been told

56

AOT
LAB

Direct changeover

Parallel running

Phased changeover

Installation
Od system
New system
Old system
Newsystem
Newsystem—Phase 1
Old system Newsystem—Phase 2

New system—Phase 3

>

Time

57

AfATB Direct Changeover

¢+ On a date the old system stops and the new system
starts

+ Brings immediate benefits

+ Forces users to use the new system

+ Simple to plan

- No fallback if problems occur

- Contingency plans required for the unexpected

- The plan must work without difficulties

¢ Suitable for small-scale, low-risk systems

58

Af}g Parallel Running

¢ Old system runs alongside the new system for a period
of time

+ Provides fallback if there are problems

+ Qutputs of the two systems can be compared, so testing
continues into the live environment

- High running cost including staff for dual data entry
- Cost associated with comparing outputs of two systems

- Users may not be committed to the new system

¢ Suitable for business-critical, high-risk systems

59

AOT

LAB Phased Changeover

+ The new system is introduced in stages, department
by department or geographically
+ Attention can be paid to each sub-system in turn

+ Sub-systems with a high return on investment can be
iIntroduced first

+ Thorough testing of each stage as it is introduced

- If there are problems rumors can spread ahead of the
Implementation

- There can be a long wait for benefits from later stages

¢ Suitable for large systems with independent sub-
systems

60

AOT

LAB Post Implementation Review

* Review the system
= Whether it is delivering the benefits expected

= Whether it meets the requirements

+ Review the development project
= Record lessons learned

= Use actual time spent on project to improve estimating
process

¢ Plan actions for any maintenance or enhancements

61

Af}t-g Evaluation Report

¢ Cost benefit analysis
= Has it delivered?
= Compare actual ones with projections

¢ Functional requirements
= Have they been met?
= Any further work needed?

+ Non-functional requirements
= Assess whether measurable objectives have been met

+ User satisfaction

= Quantitative and qualitative assessments of satisfaction with
the product

62

Af}t-g Evaluation Report

* Problems and issues

= Problems during the project and solutions so lessons can be
learned

+ Positive experiences
= What went well?

= \Who deserves credit?

+ Quantitative data for planning
= How close were time estimates to actual ones?

= How can we use this data?

63

Af}t-g Evaluation Report

+ Candidate components for reuse

= Are there components that could be reused in other projects
In the future?

¢ Future developments

= Were requirements left out of the project due to time
pressure?

= When should they be developed?

+ Actions
= Summary list of actions, responsibilities and deadlines

64

AOT .
LAB Maintenance

+ Software maintenance is the modification of a software
product after delivery

* To correct faults
= To improve performance or other attributes

= To adapt the product to a modified environment

65

AfATB Maintenance Activities

¢ Systems need maintaining after they have gone live
+ Bugs will appear and need fixing
+ Enhancements to the system may be requested

+ Maintenance needs to be controlled so that bugs are

not introduced and unnecessary changes are not
made

66

AfATB Maintenance Activities

+ Helpdesk, operations and support staff need training to
take on these tasks

+ A change control system is required to manage
requests for bug fixes and enhancements

+ Changes need to be evaluated for their cost and their
Impact on other parts of the system, and then planned

67

AOT

LAB Maintenance Documentation

¢ Bug reporting database

* Requests for enhancements

+ Feedback to users

+ Implementation plans for changes

¢ Updated technical and user documentation

+ Records of changes made

68

