
Agent and Object Technology Lab
Dipartimento di Ingegneria dell’Informazione

AOTAOT
LABLAB Dipartimento di Ingegneria dell Informazione

Università degli Studi di ParmaLABLAB

Software Engineering

DesignDesign

Prof. Agostino Poggi

AOTAOT
LABLAB Design Definition

Design is the process of applying various techniques
and principles for the purpose of defining a device, a
process, or a system in sufficient detail to permit its
physical realization

The goal of design is to produce a model or
representation that:representation that:

Can be reasoned about

May later be built

2

y

AOTAOT
LABLAB General Design Guidelines

Exhibit a modular organization that make intelligent
use of control among components

L i ll titi d i t t th t fLogically partitioned into components that perform
specific tasks and subtasks

Describe both data and procedure

Lead to interfaces that reduce complexity

Derived using a repeatable method driven by
information gathered during requirements

3

g g q

AOTAOT
LABLAB Good Design Features

The design must implement all the explicit
requirements contained in the analysis model, and it
must accommodate all of the implicit requirements
desired by the customer
The design must be a readable, understandable guideThe design must be a readable, understandable guide
for those who generate code and for those who test
and subsequently support the softwareand subsequently support the software
The design should provide a complete picture of the
software addressing the data functional andsoftware, addressing the data, functional, and
behavioral domains from an implementation
perspective

4

perspective

AOTAOT
LABLAB Fundamental Design Principles

Abstraction

RefinementRefinement

M d l itModularity

Cohesion

Coupling

5

AOTAOT
LABLAB Abstraction

Abstraction allows to focus on the important aspects of
a problem at a particular level without the hindrance of
unnecessary or irrelevant detail

Abstraction allows the description of a system as aAbstraction allows the description of a system as a
layered structure:

The higher the level, the less detail

The lower the level, the more detail

6

AOTAOT
LABLAB Refinement

Top-down process where in each step, one or several
instructions of the given program are decomposed into
more detailed instructions
Basic idea is:

Start with a high-level specification of how a problem can beStart with a high level specification of how a problem can be
solved
Break this down into a small number of problemsea t s do to a s a u be o p ob e s
For each of these problems do the same
Repeat until the sub-problems may be solved immediatelyRepeat until the sub problems may be solved immediately

Is not appropriate for large-scale, distributed systems
and is mainly applicable to the design of methods

7

and is mainly applicable to the design of methods

AOTAOT
LABLAB Design Space and Refinement

SpecificationProblem
O i t d

Abstract
Oriented Algorithm

Representation Functional
Decomposition

Data-Oriented
D i

Object-OrientedDecomposition DesignDesign

Computer
Abstract

D t TProgram

I t ti P di t

Computer
Oriented

Data Type

8

Instructions PredicatesProcedures

AOTAOT
LABLAB Modularity

Divide software into separate components that are
integrated to solve problem requirements

Modularity allows to reduce complexity, facilitate
change, make easier implementation and facilitate g , p
parallel development

A design method can be called "modular" only if it
supports modular decomposability composabilitysupports modular decomposability, composability,
understandability, continuity and protection

9

AOTAOT
LABLAB Modularity Requirements

Modular decomposability

A software problem can be divided into a small number of
l l b bl t d b i l t tless complex sub problems, connected by a simple structure,
and independent enough to allow further work to proceed
separately on each itemseparately on each item

M d l bilitModular composability

S ft l t b bi d ith h th tSome software elements can be combined with each other to
produce new systems, possibly in an environment quite
different from the one in which they were initially developed

10

different from the one in which they were initially developed

AOTAOT
LABLAB Modularity Requirements

Modular understandability
A human reader can understand each module without having
to know the others, or, at worst, by having to examine only a
f f th thfew of the others

Modular continuityy
A small change in the problem specification will trigger a
change of just one module, or a small number of modules g j

Modular protection
Th ff t f b l diti i t ti iThe effect of an abnormal condition occurring at run time in a
module will remain confined to that module, or at worst will
only propagate to a few neighboring modules

11

only propagate to a few neighboring modules

AOTAOT
LABLAB Modular Design Principles

Linguistic modular units

Modules must correspond to linguistic units in the language
used (e.g., Java packages)(g , p g)

Few interfaces

Every module should communicate with as few others as
possiblep

Small interfaces

If any two modules communicate, they should exchange as
little information as possible

12

AOTAOT
LABLAB Modular Design Principles

Explicit interfaces

If any two modules communicate, it must be obvious (e.g., it
must be described in the design documentation)must be described in the design documentation)

I f ti hidiInformation hiding

All information about a module should be private to theAll information about a module should be private to the
module unless it is specifically declared otherwise

I t f th f th t th d lInterfaces are the means for the access to the module
information

13

AOTAOT
LABLAB Modularity Tradeoff

cost of
software

module development cost

module
integrationintegration

cost

optimal number number of modulesoptimal number
of modules

number of modules

14

AOTAOT
LABLAB Cohesion

Measure of the closeness of Coincidental cohesion
Low

Measure of the closeness of
the relationships between
elements of a component or

Coincidental cohesion

Logical cohesion

module of a system Temporal cohesion

Procedural cohesion
Strong cohesion is desirable
because:

Procedural cohesion

Communicational cohesion

Simplifies correction, change
and extension

Sequential cohesion

Functional cohesion
Reduces testing

Promotes reuse

Functional cohesion

Object cohesion

15

High

AOTAOT
LABLAB Cohesion Types

Coincidental cohesion
Elements are not related but simply bundled for convenience

Logical cohesionLogical cohesion
Elements that perform similar functions, have a similar input
and error handlingand error handling

Temporal cohesion
Elements that are activated at a common time, have a
common startup and shutdown

Procedural cohesion
Elements make up a single control sequence

16

p g q

AOTAOT
LABLAB Cohesion Types

Communicational cohesion
Elements operate on the same input or produce the same
output

Sequential cohesion
Elements share or operate on shared data (e.g., output of
one element is input for another)

Functional cohesion
Elements devoted to achieving a single functional
requirement (only access to necessary data/functions)

Object cohesion
Only object operations allow object attributes to be modified

17

y j j
or inspected (information hiding)

AOTAOT
LABLAB Coupling

Measure of interconnection No direct coupling
Weak

Measure of interconnection
among modules

No direct coupling

Data coupling

With strong (tight) coupling,
modules are highly

Stamp coupling

Control couplingmodules are highly
dependent on each other

Control coupling

External coupling

With weak (loose) coupling,
Common coupling

Premature bindingmodules are largely
independent

Premature binding

Content coupling

18

Strong

AOTAOT
LABLAB Coupling Levels

No direct coupling
No dependencies

D t liData coupling
Only necessary data passed as arguments

Stamp (data structure) coupling
D t t t d b t li t d l iData structure passed by argument list and only some is
used

Control coupling
Interface by passing flags and other parameters

19

y p g g p

AOTAOT
LABLAB Coupling Levels

External coupling
Ties to devices or device drivers

C liCommon coupling
Use of global variables

Premature binding
U f b d th l th h tUse of numbers and other values throughout a program

Content couplingp g
Modifies the statements/data of another module

Branch to middle of a module

20

Branch to middle of a module

AOTAOT
LABLAB Process Design Stages

Problem understanding
L k t th bl f diff t l t di thLook at the problem from different angles to discover the
design requirements

Id tif l tiIdentify one or more solutions
Evaluate possible solutions and choose the most appropriate
d di th d i ' i d il bldepending on the designer's experience and available
resources

Describe solution abstractionsDescribe solution abstractions
Use graphical, formal or other descriptive notations to
describe the components of the designdescribe the components of the design

Repeat process for each identified abstraction
til th d i i d i i iti t

21

until the design is expressed in primitive terms

AOTAOT
LABLAB Design Process Phases

Requirements
specification

Architectural Abstract Interface Component AlgorithmData structureArchitectural
design

Abstract
specification

Interface
design

Component
design

Algorithm
design

Data structure
design

Component
specification

Software
specification

System
architecture

Algorithm
specification

Data structure
specification

Interface
specification

Specifies subsystems Designs data structuresp y

Describes subsystem interfaces

g

Designs Algorithms

22

Identifies subsystems Decomposes sub-systems into components

AOTAOT
LABLAB Object-Oriented Design

Design focuses on modeling how the functionality
captured in the analysis model will be implemented
The design model is a refinement and elaboration of g
the analysis model, with added detail and technical
solutions where:

Each analysis class is realized as one or more design
classes or interfaces
The goal is also to determine the physical layout
(deployment) of the system

The resulting design is used as the basis of source
code production

23

p

AOTAOT
LABLAB Object-Oriented Design Goals

Object-oriented analysis focuses primarily on the
describing problem domain itself

Object-oriented design reexamines the domain with an
eye to practical concernsy p

Main goals of design are:Main goals of design are:

Reuse: factor out common code in abstract classesReuse: factor out common code in abstract classes

Performance tradeoffs: efficiency versus effectiveness

24

y

AOTAOT
LABLAB Alternative Design Approaches

Designing to an implementation:

Specific classes are connected

Used to keep things simple (but rigid)

Designing to a contract:

A class is connected to an interface that may have many
possible realizationspossible realizations

Used to make things flexible (but possibly more complex)

25

AOTAOT
LABLAB Design Classes

Design classes refine analysis classes to include
implementation details

One analysis class may be realized by any number of
design classesdesign classes

D i l l i f id ti f thDesign classes also arise from consideration of the
solution domain

Utility class libraries, middleware, GUI libraries, reusable
components etc

26

components, etc.

AOTAOT
LABLAB Well-Formedness Classes

Completeness

The class does no less than its clients may reasonably
expectp

Sufficiencyy

The class does no more than its clients may reasonably
expectexpect

PrimitivenessPrimitiveness

Services should be simple, atomic, and unique

27

AOTAOT
LABLAB Well-Formedness Classes

High cohesion
Each class should embody a single, well-defined abstract
concept

All the operations should support the intent of the class

Low coupling
A class should be coupled to just enough other classes to p j g
fulfill its responsibilities

Only couple two classes when there is a true semantic y p
relationship between them

Avoid coupling classes just to reuse some code

28

p g j

AOTAOT
LABLAB Design Classes Specification

Full specification of attributes
Type
Visibility
Default values

Full specification of operationsp p
Parameter lists
Return typesReturn types
Visibility
ExceptionsExceptions
Behavior

Full specification of constructors / destructors

29

Full specification of constructors / destructors

AOTAOT
LABLAB Operations Identifications

Operations are extracted from the interaction diagrams
that realize the analysis use cases

Identifying the operations to be allocated to the variousIdentifying the operations to be allocated to the various
classes is easy

Determining to which class each operation should be
allocated is hard

30

AOTAOT
LABLAB Operations Allocation Criteria

Responsibility-driven design
If l Cli t d t th l SIf a class, Client, sends a message to another class, Server,
telling it to do something, then it is the responsibility of the
class Server to perform the requested operationclass, Server, to perform the requested operation

Inheritance
If ti b li d t th i t fIf an operation can be applied to the instances of a
superclass and to the instances of its subclasses, then the
operation must be assigned to the superclassoperation must be assigned to the superclass

Polymorphism and dynamic binding
If an operation can be applied to the instances of theIf an operation can be applied to the instances of the
subclasses, but not to the instances of the superclass, then
an abstract operation is defined in the superclass, and its

31

an abstract operation is defined in the superclass, and its
implementation is realized in the different subclasses

AOTAOT
LABLAB Design Relationships

Design relationships are a refinement of analysis
relationships

The design model specifies how the relationships will be
realized

All design relations must have multiplicity andAll design relations must have multiplicity and
navigability (i.e., directionality)

All design relations should name the target end with a
role

32

role

AOTAOT
LABLAB Aggregation Relationship

Whole-part relationship where objects of one class act
h h l d bj f h has the whole or aggregate, and objects of the other

class act as the parts:

The whole uses the services of the parts

The parts perform the requests of the whole

The whole is the dominant, controlling side of the relationshipThe whole is the dominant, controlling side of the relationship

The part tends to be more passive

33

AOTAOT
LABLAB Aggregation Relationship

An aggregation relationship is transitive:

A part of a part is a part of the whole

An aggregation relationship is asymmetric:

A whole can never directly or indirectly be a part of itselfA whole can never directly or indirectly be a part of itself

There must never be a cycle in the aggregation graph

There are two kinds of aggregation relationship:

Weak aggregation (named aggregation)

Strong aggregation (named composition)

34

Strong aggregation (named composition)

AOTAOT
LABLAB Aggregation Semantics

The aggregate can sometimes exist independently of
the parts, sometimes not
The parts can exist independently of the aggregatep p y gg g
The aggregate is in some way incomplete if some of
the parts are missingthe parts are missing
It is possible to have shared ownership of the parts by
several aggregatesseveral aggregates
Aggregation hierarchies and networks are possible
The whole always knows about the parts, but if the
relationship is one-way from the whole to the part, the

35

parts don't know about the whole

AOTAOT
LABLAB Aggregation Example

Aggregation is like a computer and its peripherals:

A computer is only weakly related to its peripheralsp y y p p

Peripherals may come and goPeripherals may come and go

P i h l b h d b t tPeripherals may be shared between computers

Peripherals are not in any meaningful sense "owned" by any
particular computer

36

AOTAOT
LABLAB Composition Semantics

The parts belong to exactly one composite at a time
The composite has sole responsibility for the
disposition of all its partsp p

This means responsibility for their creation and destruction
The composite may also release parts providedThe composite may also release parts, provided
responsibility for them is assumed by another object
If the composite is destroyed it must destroy all itsIf the composite is destroyed, it must destroy all its
parts or assign them to some other composite
E h t b l t tl itEach part belongs to exactly one composite

Composition hierarchies are possible

37

Composition networks are impossible

AOTAOT
LABLAB Composition Example

Composition is like a tree and its leaves:

L d b tl tLeaves are owned by exactly one tree

Leaves can't be shared between trees

When the tree dies, its leaves go with it, g

38

AOTAOT
LABLAB

Refining Analysis Associations
with Aggregationwith Aggregation

Add multiplicities and role names

Decide which side of the relationship is the whole and
which is the partwhich is the part

Look at the multiplicity of the whole side:
if it is 1, it is possible to use composition:

• Check whether the association has composition semantics, then apply
composition else apply aggregation

If it is not 1
• Use aggregation

Add navigability from the whole to the part

39

Add navigability from the whole to the part

AOTAOT
LABLAB

A B

1 1

When is possible the use of composition, then analysis
one-to-one associations can be represented in three
different ways:

A composition association
A B

1 1

A merging of the two classes AB

An attribute A

Composition cycles must be avoided

B b

40

Composition cycles must be avoided

AOTAOT
LABLAB

A B

* 1

Analysis many-to-one associations cannot be
represented by composition associations, but by
aggregation associations

A BA B

* 1

Aggregation cycles must be avoidedAggregation cycles must be avoided

41

AOTAOT
LABLAB

A B

1 *

Analysis one-to-many associations can be represented
by a composition association through the use of:

container classescontainer classes

Inbuilt arrays

Container classes are more flexible than inbuilt arrays
d ft f t th h th hi fand often are faster than arrays when the searching of

specific elements is required
Inbuilt array are faster than container classes when the
searching of specific elements is not required

42

AOTAOT
LABLAB

A B

1 *

Model the container A Vector B

class explicitly

Tell the container class to use

1 *11

Tell the container class to use
by adding a property to the
relationship

A B

1 *

{ Vector }

relationship

Tell the programmer what A B{ ordered }
container class semantics are
required by adding a property

A B

1 *

{ ordered }

to the relationship

Leave it up to the programmers
A B

43

Leave it up to the programmers 1 *

AOTAOT
LABLAB

Refining Analysis Associations
with Reificationwith Reification

Reification has the meaning of regarding or treating an
abstract thing as if it had concrete or material existence

In the object-oriented context, reification is the
characterization of ‘something’ in terms of objectscharacterization of something in terms of objects

I th t t f th d i thi t h i i ftIn the context of the design, this technique is often
applied to relationships between objects or possible
t t f bj t i d t h th bj tstates of objects in order to show them as objects or

relationships between objects

44

AOTAOT
LABLAB

A B

* *

Analysis many-to-many associations cannot be
represented by composition or aggregation
associations

Reify the relationship into a class

Decide which side is the whole and use aggregation,
composition, or association as appropriate

A C

1 1

B

**

45

1

AOTAOT
LABLAB

A B

1 *

Analysis bidirectional associations cannot be
represented by composition or aggregation
associations

Replace with a unidirectional aggregation or
composition from whole to part, and a unidirectional
association or dependency from part to whole

A B
1 *

*1

46

AOTAOT
LABLAB

A

C
* *

B

Analysis association classes cannot be represented by
composition or aggregation associations

Decide which side is the whole and which is the part

Replace the association class with a normal class

Add a constraint in to indicate that objects on each end j
of the reified relationship must form a unique pair

47

AOTAOT
LABLAB

A

C
* *

B

A

* *

B

C

* *

Pair constraint
trace

A C
1 1

B

**

48

AOTAOT
LABLAB Use of Interfaces

Interfaces allow software to be designed to a contract
rather than to a specific implementation

Interfaces separate specification of functionality fromInterfaces separate specification of functionality from
implementation

If a classifier inside a subsystem realizes a public
interface, the subsystem or component also realizes
the public interface

Anything that realizes an interface agrees to abide byAnything that realizes an interface agrees to abide by
the contract defined by the set of operations specified
in the interface

49

in the interface

AOTAOT
LABLAB Finding Interfaces

Challenge associations and messages

Factor out groups of reusable operations operationsFactor out groups of reusable operations, operations
and attributes

Look for classes that play the same role in the system

Look for possibilities for future expansionp p

Look for dependencies between components

50

Look for dependencies between components

AOTAOT
LABLAB Use of Inheritance

Inheritance is the strongest possible coupling between
two classes

Encapsulation is weak within an inheritance hierarchyEncapsulation is weak within an inheritance hierarchy,
leading to the "fragile base class" problem:

Ch i th b l i l d th hi hChanges in the base class ripple down the hierarchy

Very inflexible in most languagesy g g
The relationship is decided at compile time and fixed at
runtimeruntime

Only use it when there is a clear "is a" relationship
b t t l t d

51

between two classes or to reuse code

AOTAOT
LABLAB Inheritance Types

Implementation inheritance

Developers reuse code quickly by sub-classing an existing
class and refining its behavior

• Is not good for reuseIs not good for reuse

Specification inheritanceSpecification inheritance

Th l ifi ti f t i t t hi hi th tThe classification of concepts into type hierarchies, so that an
object from a specified class can be replaced by an object
from one of its subclasses

52

from one of its subclasses

AOTAOT
LABLAB Inheritance Types

Specialization

Handle differences in behavior between parent and child for
the same taskthe same task

Override some parent methods
• Refinement: call parent method and then do something extra

• Replacement: just do something different

Extension

Add to the functionality of parent by adding new data and
behaviors

53

behaviors

AOTAOT
LABLAB

Requirements for Using
Multiple InheritanceMultiple Inheritance

The multiple parent classes must all be semantically
disjoint

There must be an "is kind of" relationship between a
class and all of its parentsp

The substitutability principle must apply to the classThe substitutability principle must apply to the class
and its parents

The parents should themselves have no parent in
common

54

common

AOTAOT
LABLAB Use of Nesting

Nesting allows the definition of a class inside another
class

The nested class exists in the namespace of the outer
class

Only the outer class can create and use instances of the
nested classnested class

Nested classes are used for implementationNested classes are used for implementation
convenience rather than for information hiding

55

AOTAOT
LABLAB Use of Delegation

Delegation refers to one object relying upon another to
provide a specified set of functionalities

A class is said to delegate to another class if itA class is said to delegate to another class if it
implements an operation by resending a message to
another classanother class

Delegation can be used for:Delegation can be used for:

To ensure a class only talks to its neighbors

To avoid duplicating functionality in more than one class

To reuse code without abusing inheritance

56

To reuse code without abusing inheritance

