UNIVERSITÀ DEGLI STUDI DI PARMA

Corso di Laurea in Ingegneria Informatica

Esame di Elettrotecnica A Appello del 27-06-2008

	k_6	k_5	k_4	k_3	k_2	k_1
Matricola:						
Nome:						
Cognome:						

Valori dei parametri

$$E_{1} = 10k_{2} + k_{1} \quad [V] \qquad R_{1} = 30 + k_{2} \quad [\Omega] \qquad T_{1} = 100 + 10k_{3} \quad [\mu s]$$

$$E_{2} = 24 \qquad [V] \qquad R_{2} = 50 \qquad [\Omega] \qquad L = 200 + 10k_{2} \quad [mH]$$

$$E_{3} = 10k_{4} + k_{3} \quad [V] \qquad R_{3} = 10k_{2} + 5 \quad [\Omega] \qquad C = 2k_{3} + 2 \qquad [\mu F]$$

$$R_{4} = 64 \qquad [\Omega]$$

$$R_{5} = 86 \qquad [\Omega]$$

$$R_{6} = 20 \qquad [\Omega]$$

$$E_{1} \qquad E_{2} \qquad E_{3} \qquad R_{1} \qquad R_{2} \qquad R_{3} \qquad R_{4} \qquad R_{5} \qquad R_{6} \qquad T_{1} \qquad L \qquad C$$

$$[V] \qquad [V] \qquad [V] \qquad [\Omega] \qquad [\Omega] \qquad [\Omega] \qquad [\Omega] \qquad [\Omega] \qquad [\mu s] \qquad [mH] \qquad [\mu F]$$

$$24 \qquad \qquad 50 \qquad 64 \qquad 86 \qquad 20 \qquad \qquad$$

Risultati

	I_1	I_2	I_3	I_5	I_6	V_4	$v_C(T_1)$	P	A	$ V_C $	$\angle V_C$	
	[A]	[A]	[A]	[A]	[A]	[V]	[V]	[W]	[VA]	[V]	[°]	
Punti	2	2	2	2	2	2	8	3	3	3	3	J

Data la rete di fig. 1 calcolare il valore delle seguenti grandezze: I_1 , I_2 , I_3 , I_5 , I_6 , V_4 .

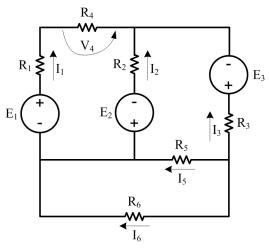


Figura 1.

Il circuito di fig. 2 è inizialmente a regime con l'interruttore S in posizione chiusa. All'istante t = 0 l'interruttore si apre. Calcolare il valore della tensione v_C sul condensatore all'istante $t = T_1$.

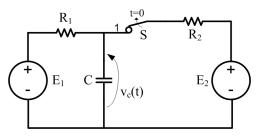


Figura 2.

Dato il circuito di fig. 3 calcolare la potenza attiva P e la potenza apparente A erogate dal generatore e la tensione $\overline{V_C}$ in modulo e fase.

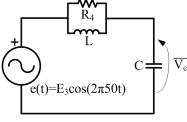


Figura 3.