Analisi Matematica $AB-$ Questionario a scelta multipla di prova (2) Compito $\boxed{1}$		
Cognome:	Nome:	Matricola:
AMB CIV GEST	MECC ELN INF	TLC
TEST – Scrivete il numero della risposta sopra al numero della corrispondente domanda.		
	Risposte	5 6 7 8 9 10 11
$ \begin{array}{ c c c c c } \hline \textbf{1} & \text{Sia } f \colon \mathbb{R} \to \mathbb{R} \text{ una funzione } \textbf{non } \text{ continua in } x_0 \in A. \text{ Allora,} \\ \hline [1] & \forall \delta > 0 \ \exists \varepsilon > 0 \text{ ed } x \in A \text{ tali } \text{che } x - x_0 < \delta \text{ e} \\ & f(x) - f(x_0) > \varepsilon. \\ \hline [3] & \text{non esiste } \lim_{x \to x_0} f(x). \\ \hline \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
2 Il limite $\lim_{x \to 1} \frac{\sin(\pi x)}{x^2 - x}$ [1] è uguale $a - \pi$. [3] non esiste.		[2] è uguale a -1 . [4] è uguale a π .
[3] Sia $\{a_n\}_n$ una successione con [1] è limitata inferiormente. [3] è illimitata superiormente.	rescente. Allora, $\{a_n\}_n$	[2] converge. [4] diverge $a + \infty$.
$ \begin{array}{ c c c } \hline \textbf{4} & \text{Sia } f \colon \mathbb{R} \to \mathbb{R}. \text{ Diremo che } \\ \hline [1] & \forall \varepsilon > 0 \exists \delta > 0 \text{tale che} \\ f(x) - 5 < \varepsilon. \\ \hline [3] & \exists \varepsilon > 0 \text{tale che} \forall \delta > 0 \\ f(x) + 5 < \varepsilon. \\ \end{array} $	$0 < x-1 < \delta$ implica	$ [2] \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tale che} \ x+1 < \delta \ \text{implica} f(x)+5 < \varepsilon. $ $ [4] \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tale che} \ 0 < x+1 < \delta \ \text{implica} f(x)+5 < \varepsilon. $
[5] La derivata di $f(x) = \tan(t^2)$ [1] 2. [3] $2(1 + \tan^2 1)$.		= $\pi/4$ è [2] 1 + $\tan^2 1$. [4] 4.
6 Il limite $\lim_{x\to 0} \frac{\log(1+2x) - \sin 2x + 2x^2(1-x)}{x^2(1-e^{-x})}$		
[1] non esiste. [3] è uguale a -2/3.	. ,	[2] è uguale $a + \infty$. [4] è uguale a 2.
This is a succession of a_n is a succession of $a_n \to -1$. The succession of $a_n \to -1$ is a succession of $a_n \to -1$.		ale che $a_n^2 - a_n \to 2$. Allora, [2] $\{a_n\}_n$ è crescente. [4] $a_n \to 2$.
Siano $f(x) = o(x)$ e $g(x) = o(x)$ [1] $g(x) + f(x) = o(x^2)$ per $x = o(x^2)$ nessuna delle altre risposte	$\rightarrow 0$. e è vera.	[2] $g(f(x)) = o(x^2) \text{ per } x \to 0.$ [4] $g(f(x)) = o(x^3) \text{ per } x \to 0.$
9 Per quale $\alpha \neq 0$ è continua [1] Per nessun $\alpha \neq 0$. [3] $\alpha = 4$.	la funzione $f(x) = \begin{cases} \frac{1 + \log \alpha}{2\alpha - x} \end{cases}$	$\frac{(1+x^2)]^{\alpha^2} - 1}{2x^2} x < 0,$ $x \ge 0.$
[1] Per nessun $\alpha \neq 0$. [3] $\alpha = 4$.		[2] $\alpha = 2$. [4] $\alpha = 1/2$.
[10] Sia $f: [a,b] \to \mathbb{R}$ un funzion [1] f è limitata superiormente [3] f assume massimo globale il teorema di Weierstrass ed in	in un punto $x_0 \in [a, b]$ per tale punto si ha $f'(x_0) = 0$.	[2] esiste $x_0 \in (a, b)$ tale che $f(x_0) = 0$. [4] esiste $x_0 \in (a, b)$ tale che $f(b) - f(a) = f(x_0)(b - a)$ per il teorema di Lagrange.
11 Il limite $\lim_{x\to 0} \frac{\sin(e^{\arctan x} - x)}{x \log x}$ 11 non esiste. 13 è uguale a 1.	$\cos \pi x)$	[2] è uguale a $-\infty$. [4] è uguale a 0.